Aufgabe 1.08Z: BPSK-Fehlerwahrscheinlichkeit

Aus LNTwww
Wechseln zu:Navigation, Suche

Zahlenwerte der Funktion  ${\rm Q}(x)$

Wir gehen vom optimalen Basisbandübertragungssystem für Binärsignale aus mit

  • bipolaren Amplitudenkoeffizienten  $a_{\nu} \in \{–1, +1\}$,
  • rechteckförmigem Sendesignal mit den Signalwerten  $\pm s_{0}$  und der Bitdauer  $T_{\rm B}$,
  • AWGN–Rauschen mit der Rauschleistungsdichte  $N_{0}$,
  • Empfangsfilter gemäß dem Matched–Filter–Prinzip,
  • Entscheider mit der optimalen Schwelle  $E = 0$.


Wenn nichts anderes angegeben,  sollten Sie zudem von den folgenden Zahlenwerten ausgehen:

$$ s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$$

Die Bitfehlerwahrscheinlichkeit dieses „Basisbandsystems” wurde bereits im Kapitel  "Fehlerwahrscheinlichkeit bei Basisbandübertragung"  angegeben $($Index:  $\rm BB)$:

$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}.$$

Hierbei bezeichnet  $\sigma_{d}$  den Rauscheffektivwert am Entscheider und  ${\rm Q}(x)$  die komplementäre Gaußsche Fehlerfunktion,  die hier tabellarisch gegeben ist.  Diese Fehlerwahrscheinlichkeit kann man auch in der Form

$$p_{\rm BB} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right )$$

schreiben,  wobei  $E_{\rm B}$  die „Energie pro Bit” bezeichnet.

Die Fehlerwahrscheinlichkeit eines vergleichbaren Übertragungssystems mit  "Binary Phase Shift Keying"  lautet $($Index:  $\rm BPSK)$:

$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/{T_{\rm B}}}.$$



Hinweise:

  • Da hier der Signalwert  $s_{0}$  in „Volt” angegeben ist und keine Angabe zum Bezugswiderstand gemacht wird,  hat  $E_{\rm B}$  die Einheit „$\rm V^{2}/Hz$”.



Fragebogen

1

Es gelte  $s_{0} = 4 \, \rm V$.  Wie groß ist die Fehlerwahrscheinlichkeit  $p_{\rm BB}$  des Basisbandsystems?

$p_{\rm BB} \ = \ $

$\ \% $

2

Wie groß ist die Energie pro Bit beim Basisbandsystem mit  $s_{0} = 4 \, \rm V$?

$E_{\rm B} \ = \ $

$\ \cdot 10^{-8}\ \rm V^{2}s $

3

Welche Fehlerwahrscheinlichkeit  $p_{\rm BB}$  ergibt sich bei halber Sendeamplitude   $(s_{0} = 2 \, \rm V)$?

$p_{\rm BB} \ = \ $

$\ \% $

4

Geben Sie die Fehlerwahrscheinlichkeit der BPSK abhängig vom Quotienten  $E_{\rm B}/N_{0}$  an.  Welches Ergebnis stimmt?

$p_{\rm BPSK} = {\rm Q}\big [(E_{\rm B}/N_{0})^{1/2}\big ]$,
$p_{\rm BPSK} = {\rm Q}\big [(2 \cdot E_{\rm B}/N_{0})^{1/2}\big ]$,
$p_{\rm BPSK} = {\rm Q}\big [(4\cdot E_{\rm B}/N_{0})^{1/2}\big ]$.

5

Welche Fehlerwahrscheinlichkeiten ergeben sich für die BPSK und  $E_{\rm B}/N_{0} = 8$  bzw.  $E_{\rm B}/N_{0} = 2$?

$E_{\rm B}/N_{0} = 8\text{:}\hspace{0.4cm} p_{\rm BPSK} \ = \ $

$\ \% $
$E_{\rm B}/N_{0} = 2\text{:}\hspace{0.4cm} p_{\rm BPSK} \ = \ $

$\ \% $


Musterlösung

(1)  Der Rauscheffektivwert ergibt sich hier zu

$$\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}= \sqrt{\frac{2 \cdot 10^{-9}\,{\rm V^2/Hz}}{2 \cdot 1\,{\rm ns}}}= 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}p_{\rm BB} = {\rm Q}\left ({s_0}/{\sigma_d } \right )= {\rm Q}(4)= 0.317 \cdot 10^{-4}\hspace{0.1cm}\underline {= 0.00317 \%}.$$


(2)  Beim Basisbandsystem gilt:

$$E_{\rm B} = s_0^2 \cdot T_{\rm B}= (4\,{\rm V})^2 \cdot 10^{-9}\,{\rm s}\hspace{0.1cm}\underline {= 1.6 \cdot 10^{-8}\,{\rm V^2s}}.$$
  • Natürlich ergibt sich mit der zusätzlich angegebenen Gleichung die genau gleiche Fehlerwahrscheinlichkeit:
$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 16 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
  • Ein Vergleich mit der Teilaufgabe  (4)  von  Aufgabe A1.8  zeigt,  dass  $E_{\rm B}/N_{0} = 8$  nicht  (exakt)  gleich  $10 \cdot \lg E_{\rm B}/N_{0} = 9 \ \rm dB$  ist. 
  • Im ersten Fall ergibt sich  $p_{\rm BB} = 0.317 \cdot 10^{–4}$, im zweiten  $p_{\rm BB} = 0.336 \cdot 10^{-4}$.


(3)  Bei halber Sendeamplitude  $s_{0} = 2 \ \rm V$  sinkt die Energie pro Bit auf ein Viertel und es gelten folgende Gleichungen:

$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \frac{2\,{\rm V}}{1\,{\rm V}} \right )\hspace{0.1cm}\underline {= {\rm Q}(2)= 2.27 \%},$$
$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 4 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(2)= 2.27 \%.$$


(4)  Unter Berücksichtigung der nur mehr halben Energie  $E_{\rm B} = s^{2}_{0} \cdot T_{\rm B}/2$  erhält man mit  $\sigma^{2}_{d} = N_{0}/T_{\rm B}$  und

$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )= {\rm Q}\left ( \sqrt{{s_0^2 \cdot T_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }}\hspace{0.1cm}\right )$$

das genau gleiche Ergebnis wie beim optimalen Basisbandsystem   ⇒   Lösungsvorschlag 2.


(5)  Es ergeben sich damit natürlich auch die genau gleichen Ergebnisse wie bei der Basisbandübertragung:

$${ E_{\rm B}}/{N_0 }= 8{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{16}) = {\rm Q}(4)\hspace{0.1cm}\underline {= 0.00317 \%},$$
$${ E_{\rm B}}/{N_0 }= 2{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{4}) = {\rm Q}(2) \hspace{0.1cm}\underline {= 2.27 \%}.$$