Momente einer diskreten Zufallsgröße

Aus LNTwww
Wechseln zu:Navigation, Suche

Berechnung als Schar- bzw. Zeitmittelwert


Die Wahrscheinlichkeiten und die relativen Häufigkeiten liefern weitreichende Informationen über eine diskrete Zufallsgröße.

Reduzierte Informationen erhält man durch die so genannten Momente  $m_k$, wobei  $k$  eine natürliche Zahl darstellt.

$\text{Zwei alternative Berechnungsmöglichkeiten:}$ 

Unter der hier stillschweigend vorausgesetzten Bedingung  "Ergodizität"  gibt es für das Moment  $k$-ter Ordnung zwei unterschiedliche Berechnungsmöglichkeiten:

  • die  Scharmittelung  bzw.  "Erwartungswertbildung"   ⇒   Mittelung über alle möglichen Werte  $\{ z_\mu\}$  mit der Laufvariablen  $\mu = 1 , \hspace{0.1cm}\text{ ...} \hspace{0.1cm} , M$:
$$m_k = {\rm E} \big[z^k \big] = \sum_{\mu = 1}^{M}p_\mu \cdot z_\mu^k \hspace{2cm} \rm mit \hspace{0.1cm} {\rm E\big[\text{ ...} \big]\hspace{-0.1cm}:} \hspace{0.3cm} \rm Erwartungswert ;$$
  • die  Zeitmittelung  über die Zufallsfolge  $\langle z_ν\rangle$  mit der Laufvariablen  $ν = 1 , \hspace{0.1cm}\text{ ...} \hspace{0.1cm} , N$:
$$m_k=\overline{z_\nu^k}=\hspace{0.01cm}\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=\rm 1}^{\it N}z_\nu^k\hspace{1.7cm}\rm mit\hspace{0.1cm}\ddot{u}berstreichender\hspace{0.1cm}Linie\hspace{-0.1cm}:\hspace{0.1cm}Zeitmittelwert.$$


Anzumerken ist:

  • Beide Berechnungsarten führen bei genügend großen Werten von  $N$  zum gleichen asymptotischen Ergebnis.
  • Bei endlichem  $N$  ergibt sich ein vergleichbarer Fehler,  als wenn die Wahrscheinlichkeit durch die relative Häufigkeit angenähert wird.

Linearer Mittelwert - Gleichanteil


$\text{Definition:}$  Mit  $k = 1$  erhält man aus der allgemeinen Gleichung für die Momente den  linearen Mittelwert:

$$m_1 =\sum_{\mu=1}^{M}p_\mu\cdot z_\mu =\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=1}^{N}z_\nu.$$
  • Der linke Teil dieser Gleichung beschreibt die Scharmittelung  (über alle möglichen Werte),
während die rechte Gleichung die Bestimmung als Zeitmittelwert angibt.
  • In Zusammenhang mit Signalen wird diese Größe auch als der  Gleichanteil  bezeichnet.


Gleichanteil  $m_1$  eines Binärsignals

$\text{Beispiel 1:}$  Ein Binärsignal  $x(t)$  mit den beiden möglichen Amplitudenwerten

  • $1\hspace{0.03cm}\rm V$  $($für das Symbol  $\rm L)$,
  • $3\hspace{0.03cm}\rm V$  $($für das Symbol  $\rm H)$


sowie den Auftrittswahrscheinlichkeiten  $p_{\rm L} = 0.2$  bzw.  $p_{\rm H} = 0.8$  besitzt den linearen Mittelwert (Gleichanteil )

$$m_1 = 0.2 \cdot 1\,{\rm V}+ 0.8 \cdot 3\,{\rm V}= 2.6 \,{\rm V}. $$

Dieser ist in der Grafik als rote Linie eingezeichnet.

Bestimmt man diese Kenngröße durch Zeitmittelung über die dargestellten  $N = 12$  Signalwerte,  so erhält man einen etwas kleineren Wert:

$$m_1\hspace{0.01cm}' = 4/12 \cdot 1\,{\rm V}+ 8/12 \cdot 3\,{\rm V}= 2.33 \,{\rm V}. $$

Hier wurden die Auftrittswahrscheinlichkeiten  $p_{\rm L} = 0.2$  bzw.  $p_{\rm H} = 0.8$  durch die entsprechenden Häufigkeiten  $h_{\rm L} = 4/12$  und  $h_{\rm H} = 8/12$  ersetzt.  Der relative Fehler aufgrund der unzureichenden Folgenlänge  $N$  ist im Beispiel größer als  $10\%$.

$\text{Hinweis zu unserer (zugegebenermaßen etwas ungewöhnlicher) Nomenklatur:}$

Wir bezeichnen hier Binärsymbole wie in der Schaltungstechnik mit  $\rm L$  ("Low") und  $\rm H$  ("High"),  um Verwechslungen zu vermeiden.

  • In der Codierungstheorie wird sinnvollerweise  $\{ \text{L, H}\}$  auf  $\{0, 1\}$  abgebildet,  um die Möglichkeiten der Modulo-Algebra nutzen zu können.
  • Zur Beschreibung der Modulation mit bipolaren  (antipodalen)  Signalen wählt man dagegen besser die Zuordnung  $\{ \text{L, H}\}$ ⇔ $ \{-1, +1\}$.

Quadratischer Mittelwert – Varianz – Streuung


$\text{Definitionen:}$ 

  • Analog zum linearen Mittelwert erhält man mit  $k = 2$  für den  quadratischen Mittelwert:
$$m_2 =\sum_{\mu=\rm 1}^{\it M}p_\mu\cdot z_\mu^2 =\lim_{N\to\infty}\frac{\rm 1}{\it N}\sum_{\nu=\rm 1}^{\it N}z_\nu^2.$$
  • Zusammen mit dem Gleichanteil  $m_1$  kann daraus als weitere Kenngröße die  Varianz  $σ^2$  bestimmt werden  ("Satz von Steiner"):
$$\sigma^2=m_2-m_1^2.$$
  • Als  Streuung  $σ$  bezeichnet man in der Statistik die Quadratwurzel der Varianz;  manchmal wird diese Größe auch  "Standardabweichung"  genannt:
$$\sigma=\sqrt{m_2-m_1^2}.$$


$\text{Hinweise zu den Einheiten:}$

  • Bei Nachrichtensignalen gibt  $m_2$  die$\text{ "(mittlere) Leistung"  eines Zufallssignals an,$\text{ bezogen auf den Widerstand  $1 \hspace{0.03cm} Ω$.
  • Beschreibt  $z$  eine Spannung,$\text{ so besitzt dementsprechend  $m_2$  die Einheit$\text{ ${\rm V}^2$.
  • Die Varianz  $σ^2$  eines Zufallssignals entspricht physikalisch der  "Wechselleistung"  und die Streuung  $σ$  dem "Effektivwert".
  • Diesen Definitionen liegt wiederum der Bezugswiderstand  $1 \hspace{0.03cm} Ω$  zugrunde.


Das Lernvideo   Momentenberechnung bei diskreten Zufallsgrößen   verdeutlicht die definierten Größen am Beispiel eines Digitalsignals.

Standardabweichung eines Binärsignals

$\text{Beispiel 2:}$  Ein Binärsignal  $x(t)$  mit den Amplitudenwerten

  • $1\hspace{0.03cm}\rm V$  $($für das Symbol  $\rm L)$,
  • $3\hspace{0.03cm}\rm V$  $($für das Symbol  $\rm H)$


sowie den Auftrittswahrscheinlichkeiten  $p_{\rm L} = 0.2$  bzw.  $p_{\rm H} = 0.8$  besitzt die gesamte Signalleistung

$$P_{\rm Gesamt} = 0.2 \cdot (1\,{\rm V})^2+ 0.8 \cdot (3\,{\rm V})^2 = 7.4 \hspace{0.05cm}{\rm V}^2,$$

wenn man vom Bezugswiderstand  $R = 1 \hspace{0.05cm} Ω$  ausgeht.

Mit dem Gleichanteil  $m_1 = 2.6 \hspace{0.05cm}\rm V$  $($siehe  $\text{Beispiel 1})$  folgt daraus für

  • die Varianz  $ σ^2 = 7.4 \hspace{0.05cm}{\rm V}^2 - \big [2.6 \hspace{0.05cm}\rm V\big ]^2 = 0.64\hspace{0.05cm} {\rm V}^2$,
  • die Wechselleistung  $P_{\rm W} = 0.64\hspace{0.05cm} {\rm W}$,
  • den Effektivwert  $s_{\rm eff} = σ = 0.8 \hspace{0.05cm} \rm V$.
Einschub:   Bei anderem Bezugswiderstand   ⇒   $R \ne 1 \hspace{0.1cm} Ω$  gelten nicht alle diese Berechnungen.  Beispielsweise haben mit  $R = 50 \hspace{0.1cm} Ω$  die Leistung $P_{\rm Gesamt} $,  die Wechselleistung  $P_{\rm W}$  und der Effektivwert  $s_{\rm eff}$  folgende physikalische Werte:
$$P_{\rm Gesamt} \hspace{-0.05cm}= \hspace{-0.05cm} \frac{m_2}{R} \hspace{-0.05cm}= \hspace{-0.05cm} \frac{7.4\,{\rm V}^2}{50\,{\rm \Omega} } \hspace{-0.05cm}= \hspace{-0.05cm}0.148\,{\rm W},\hspace{0.5cm} P_{\rm W} \hspace{-0.05cm} = \hspace{-0.05cm} \frac{\sigma^2}{R} \hspace{-0.05cm}= \hspace{-0.05cm}12.8\,{\rm mW} \hspace{0.05cm},\hspace{0.5cm} s_{\rm eff} \hspace{-0.05cm} = \hspace{-0.05cm}\sqrt{R \cdot P_{\rm W} } \hspace{-0.05cm}= \hspace{-0.05cm} \sigma \hspace{-0.05cm}= \hspace{-0.05cm} 0.8\,{\rm V}.$$

Die gleiche Varianz und der gleiche Effektivwert  $s_{\rm eff}$  ergeben sich für die Amplituden  $0\hspace{0.05cm}\rm V$  $($für das Symbol  $\rm L)$  und $2\hspace{0.05cm}\rm V$  $($für das Symbol  $\rm H)$,  vorausgesetzt, die Auftrittswahrscheinlichkeiten  $p_{\rm L} = 0.2$  und  $p_{\rm H} = 0.8$  bleiben gleich.  Nur der Gleichanteil und die Gesamtleistung ändern sich:

$$m_1 = 1.6 \hspace{0.05cm}{\rm V}, \hspace{0.5cm}P_{\rm Gesamt} = {m_1}^2 +\sigma^2 = 3.2 \hspace{0.05cm}{\rm V}^2.$$

Aufgaben zum Kapitel


Aufgabe 2.2: Mehrstufensignale

Aufgabe 2.2Z: Diskrete Zufallsgrößen