Aufgabe 4.09: Entscheidungsregionen bei Laplace

Aus LNTwww
Version vom 29. Juli 2022, 17:25 Uhr von Guenter (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

Drei Entscheidungsregionen
für Laplace

Wir betrachten ein Übertragungssystem,  basierend auf den Basisfunktionen  $\varphi_1(t)$  und  $\varphi_2(t)$.  Die beiden gleichwahrscheinlichen Sendesignale sind durch die Signalpunkte

$$\boldsymbol{ s }_0 = (-\sqrt{E}, \hspace{0.1cm}-\sqrt{E})\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_1 = (+\sqrt{E}, \hspace{0.1cm}+\sqrt{E})\hspace{0.05cm}$$

gegeben.  Im Folgenden normieren wir zur Vereinfachung den Energieparameter zu  $E = 1$  und erhalten somit

$$\boldsymbol{ s }_0 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (-1, \hspace{0.1cm}-1) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} m_0\hspace{0.05cm}, $$
$$ \boldsymbol{ s }_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (+1, \hspace{0.1cm}+1)\hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} m_1\hspace{0.05cm}.$$

Die Nachrichten  $m_0$  und  $m_1$  sind den so festgelegten Signalen  $\boldsymbol{s}_0$  und  $\boldsymbol{s}_1$  eindeutig zugeordnet.

Die zwei Rauschkomponenten  $n_1(t)$  und  $n_2(t)$  seien unabhängig voneinander und jeweils laplace–verteilt mit Parameter  $a = 1$:

$$p_{n_1} (\eta_1) = {1}/{2} \cdot {\rm e}^{- | \eta_1|} \hspace{0.05cm}, \hspace{0.2cm} p_{n_2} (\eta_2) = {1}/{2} \cdot {\rm e}^{- | \eta_2|} \hspace{0.05cm} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \boldsymbol{ p }_{\boldsymbol{ n }} (\eta_1, \eta_2) = {1}/{4} \cdot {\rm e}^{- | \eta_1|- | \eta_2|} \hspace{0.05cm}. $$

Die Eigenschaften eines solchen Laplace–Rauschens werden in der  "Aufgabe 4.9Z"  noch eingehend behandelt.

Das Empfangssignal  $\boldsymbol{r}$  setzt sich additiv aus dem Sendesignal  $\boldsymbol{s}$  und dem  Rauschsignal  $\boldsymbol{n}$  zusammen:

$$\boldsymbol{ r } \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \boldsymbol{ s } + \boldsymbol{ n } \hspace{0.05cm}, \hspace{0.45cm}\boldsymbol{ r } = ( r_1, r_2) \hspace{0.05cm},\hspace{0.45cm} \boldsymbol{ s } \hspace{-0.1cm} \ = \ \hspace{-0.1cm} ( s_1, s_2) \hspace{0.05cm}, \hspace{0.8cm}\boldsymbol{ n } = ( n_1, n_2) \hspace{0.05cm}. $$

Die entsprechenden Realisierungen sind wie folgt bezeichnet:

$$\boldsymbol{ s }\text{:} \hspace{0.4cm} (s_{01},s_{02}){\hspace{0.15cm}\rm bzw. \hspace{0.15cm}} (s_{11},s_{12}) \hspace{0.05cm},\hspace{0.8cm} \boldsymbol{ r }\text{:} \hspace{0.4cm} (\rho_{1},\rho_{2}) \hspace{0.05cm}, \hspace{0.8cm}\boldsymbol{ n }\text{:} \hspace{0.4cm} (\eta_{1},\eta_{2}) \hspace{0.05cm}.$$

Die Entscheidungsregel des MAP– und des ML–Empfängers  $($beide sind aufgrund der gleichen Symbolwahrscheinlichkeiten identisch$)$  lauten:

⇒   Entscheide für das Symbol  $m_0$, falls   $p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } ( \rho_{1},\rho_{2} |m_0 ) > p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\rho_{1},\rho_{2} |m_1 ) \hspace{0.05cm}.$

⇒   Mit den weiteren Voraussetzungen kann hierfür  $($Entscheidung für  $m_0)$  auch geschrieben werden:

$${1}/{4} \cdot {\rm exp}\left [- | \rho_1 +1|- | \rho_2 +1| \hspace{0.1cm} \right ] > {1}/{4} \cdot {\rm exp}\left [- | \rho_1 -1|- | \rho_2 -1| \hspace{0.1cm} \right ] $$
$$\Rightarrow \hspace{0.3cm} | \rho_1 +1|+ | \rho_2 +1| < | \rho_1 -1|+ | \rho_2 -1|$$
$$\Rightarrow \hspace{0.3cm} L (\rho_1, \rho_2) = | \rho_1 +1|+ | \rho_2 +1| - | \rho_1 -1|- | \rho_2 -1| < 0 \hspace{0.05cm}.$$

⇒   Auf diese Funktion  $L(\rho_1, \rho_2)$  wird im Fragebogen häufiger Bezug genommen.

Die Grafik zeigt drei verschiedene Entscheidungsregionen  $(I_0, \ I_1)$.

  • Bei AWGN–Rauschen wäre nur die obere Variante  $\rm A$  optimal.
  • Auch beim betrachteten Laplace–Rauschen führt die Variante  $\rm A$  zur kleinstmöglichen Fehlerwahrscheinlichkeit, siehe  "Aufgabe 4.9Z":
$$p_{\rm min} = {\rm Pr}({\cal{E}} \hspace{0.05cm}|\hspace{0.05cm} {\rm optimaler\hspace{0.15cm} Empf\ddot{a}nger}) = {\rm e}^{-2} \approx 13.5\,\%\hspace{0.05cm}.$$
  • Zu untersuchen ist,  ob auch die Variante  $\rm B$  bzw. die Variante  $\rm C$  optimal ist,  das heißt,  ob auch deren Fehlerwahrscheinlichkeiten kleinstmöglich gleich  $p_{\rm min}$  sind.


Hinweis:  Die Aufgabe gehört zum Kapitel  "Approximation der Fehlerwahrscheinlichkeit".



Fragebogen

1

Welche der Entscheidungsregeln sind richtig?  Entscheide für  $m_0$,  falls

$p_{\it r\hspace{0.03cm}|\hspace{0.03cm}m}(\rho_1, \ \rho_2\hspace{0.03cm}|\hspace{0.03cm}m_0) > p_{\it r\hspace{0.03cm}|\hspace{0.03cm}m}(\rho_1, \ \rho_2\hspace{0.03cm}|\hspace{0.03cm}m_1)$,
$L(\rho_1, \ \rho_2) = |\rho_1+1| \, -|\rho_1 \, –1| + |\rho_2+1| \, -|\rho_2 \, –1| < 0$,
$L(\rho_1, \ \rho_2) = \rho_1 + \rho_2 ≥ 0$.

2

Wie lässt sich der Ausdruck  $|x+1| \ -|x \ -1|$  umformen?

Für  $x ≥ +1$  ist  $|x + 1| \, -|x -1| = 2$.
Für  $x ≤ \, -1$  ist  $|x+1| \,-|x \, -1| = \, -2$.
Für  $-1 ≤ x ≤ +1$  ist  $|x+1| \, -|x \, -1| = 2x$.

3

Wie lautet die Entscheidungsregel im Bereich  $-1 ≤ \rho_1 ≤ +1$,  $-1 ≤ \rho_2 ≤ +1$?

Entscheidung für  $m_0$,  falls  $\rho_1 + \rho_2 < 0$.
Entscheidung für  $m_1$,  falls  $\rho_1 + \rho_2 < 0$.

4

Wie lautet die Entscheidungsregel im Bereich  $\rho_1 > +1$?

Entscheidung für  $m_0$  im gesamten Bereich.
Entscheidung für  $m_1$  im gesamten Bereich.
Entscheidung für  $m_0$,  falls  $\rho_1 + \rho_2 < 0$.

5

Wie lautet die Entscheidungsregel im Bereich  $\rho_1 < \, -1$?

Entscheidung für  $m_0$  im gesamten Bereich.
Entscheidung für  $m_1$  im gesamten Bereich.
Entscheidung für  $m_0$,  falls  $\rho_1 + \rho_2 < 0$.

6

Wie lautet die Entscheidungsregel im Bereich  $\rho_2 > +1$?

Entscheidung für  $m_0$  im gesamten Bereich.
Entscheidung für  $m_1$  im gesamten Bereich.
Entscheidung für  $m_0$,  falls  $\rho_1 + \rho_2 < 0$.

7

Wie lautet die Entscheidungsregel im Bereich  $\rho_2 < -1$?

Entscheidung für  $m_0$  im gesamten Bereich.
Entscheidung für  $m_1$  im gesamten Bereich.
Entscheidung für  $m_0$,  falls  $\rho_1 + \rho_2 < 0$.

8

Welche der folgenden Aussagen sind zutreffend?

Die Variante  $\rm A$  führt zur minimalen Fehlerwahrscheinlichkeit.
Die Variante  $\rm B$  führt zur minimalen Fehlerwahrscheinlichkeit.
Die Variante  $\rm C$  führt zur minimalen Fehlerwahrscheinlichkeit.


Musterlösung

(1)  Richtig sind die  Lösungsvorschläge 1 und 2:

  • Die Verbundwahrscheinlichkeitsdichten unter den Bedingungen  $m_0$  bzw.  $m_1$  lauten:
$$p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } ( \rho_{1},\rho_{2} |m_0 ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{4} \cdot {\rm exp}\left [- | \rho_1 +1|- | \rho_2 +1| \hspace{0.05cm} \right ]\hspace{0.05cm},$$
$$p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } ( \rho_{1},\rho_{2} |m_1 ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{4} \cdot {\rm exp}\left [- | \rho_1 -1|- | \rho_2 -1| \hspace{0.05cm} \right ]\hspace{0.05cm}.$$
  • Bei gleichwahrscheinlichen Symbolen   ⇒   ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 0.5$  lautet die MAP–Entscheidungsregel:   Entscheide für das Symbol  $m_0$   ⇔   Signal  $s_0$,  falls
$$p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } ( \rho_{1},\rho_{2} |m_0 ) > p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\rho_{1},\rho_{2} |m_1 ) \hspace{0.05cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {1}/{4} \cdot {\rm exp}\left [- | \rho_1 +1|- | \rho_2 +1| \hspace{0.05cm} \right ] > {1}/{4} \cdot {\rm exp}\left [- | \rho_1 -1|- | \rho_2 -1|\hspace{0.05cm} \right ] $$
$$\Rightarrow \hspace{0.3cm} | \rho_1 +1|+ | \rho_2 +1| < | \rho_1 -1|+ | \rho_2 -1|\hspace{0.3cm} \Rightarrow \hspace{0.3cm} L (\rho_1, \rho_2) = | \rho_1 +1|- | \rho_1 -1|+ | \rho_2 +1| - | \rho_2 -1| < 0 \hspace{0.05cm}.$$


(2)  Alle Aussagen treffen zu:

  • Für  $x ≥ 1$  ist
$$| x +1|- | x -1| = x +1 -x +1 =2 \hspace{0.05cm}.$$
  • Ebenso gilt für  $x ≤ \, –1$,  zum Beispiel  $x = \, –3$:
$$| x +1|- | x -1| = | -3 +1|- | -3 -1| = 2-4 = -2 \hspace{0.05cm}.$$
  • Dagegen gilt im mittleren Bereich  $–1 ≤ x ≤ +1$:
$$| x+1|- | x -1| = x +1 -1 +x =2x \hspace{0.05cm}.$$


(3)  Richtig ist der  Lösungsvorschlag 1:

  • Das Ergebnis von Teilaufgabe  (1)  lautete:  Entscheide für das Symbol  $m_0$,  falls
$$L (\rho_1, \rho_2) = | \rho_1 +1| - | \rho_1 -1|+ | \rho_2 +1| - | \rho_2 -1| < 0 \hspace{0.05cm}.$$
  • Im betrachteten  (inneren)  Bereich  $-1 ≤ \rho_1 ≤ +1$,  $-1 ≤ \rho_2 ≤ +1$  gilt mit dem Ergebnis der Teilaufgabe  (2):
$$| \rho_1+1| - | \rho_1 -1| = 2\rho_1 \hspace{0.05cm}, \hspace{0.2cm} | \rho_2+1| - | \rho_2 -1| = 2\rho_2 \hspace{0.05cm}.$$
  • Setzt man dieses Ergebnis oben ein,  so ist genau dann für  $m_0$  zu entscheiden,  falls
$$L (\rho_1, \rho_2) = 2 \cdot ( \rho_1+\rho_2) < 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \rho_1+\rho_2 < 0\hspace{0.05cm}.$$


(4)  Richtig ist hier der  Lösungsvorschlag 2:

  • Für  $\rho_1 > 1$  ist  $|\rho_1+1| \, -|\rho_1 \, -1| = 2$,  während für  $D_2 = |\rho_2+1| \,-|\rho_2 \, -1|$  alle Werte zwischen  $-2$  und  $+2$  möglich sind.
  • Die Entscheidungsgröße ist somit  $L(\rho_1, \rho_2) = 2 + D_2 ≥ 0$.  In diesem Fall führt die Regel zu einer  $m_1$–Entscheidung.


(5)  Richtig ist hier der  Lösungsvorschlag 1:

  • Nach ähnlicher Rechnung wie in der Teilaufgabe  (3)  kommt man zum Ergebnis:
$$L (\rho_1, \rho_2) = -2 + D_2 \le 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Entscheidung\hspace{0.15cm} auf\hspace{0.15cm}} m_0\hspace{0.05cm}.$$


(6)  Richtig ist der  Lösungsvorschlag 2:  Entscheidung auf  $m_1$.

  • Ähnlich der Teilaufgabe  (4)  gilt hier:
$$D_1 = | \rho_1 +1| - | \rho_1 -1| \in \{-2, ... \hspace{0.05cm} , +2 \} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}L (\rho_1, \rho_2) = 2 + D_1 \ge 0 \hspace{0.05cm}.$$


(7)  Richtig ist der  Lösungsvorschlag 1:  Entscheidung auf  $m_0$.

  • Nach ähnlicher Überlegung wie in der letzten Teilaufgabe kommt man zum Ergebnis:
$$L (\rho_1, \rho_2) = -2 + D_1 \le 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Entscheidung\hspace{0.15cm} auf\hspace{0.15cm}} m_0\hspace{0.05cm}.$$


Zusammenfassung der Ergebnisse

(8)  Die Ergebnisse der Teilaufgaben  (3)  bis  (7)  sind in der Grafik zusammengefasst:

  • Teilgebiet $T_0$:   Entscheidung auf  $m_0$  bzw.  $m_1$  gemäß Aufgabe  (3).
  • Teilgebiet $T_1$:   Entscheidung auf  $m_1$  gemäß Aufgabe  (4).
  • Teilgebiet $T_2$:   Entscheidung auf  $m_0$  gemäß Aufgabe  (5).
  • Teilgebiet $T_3$:   Entscheidung auf  $m_1$  gemäß Aufgabe  (6).
  • Teilgebiet $T_4$:   Entscheidung auf  $m_0$  gemäß Aufgabe  (7).
  • Teilgebiet $T_5$:   Nach Aufgabe  (5)  sollte man auf  $m_0$  entscheiden,  nach Aufgabe  (6)  auf  $m_1$
    ⇒   Bei Laplace–Rauschen ist es egal,  ob man  $T_5$  der Region  $I_0$  oder  $I_1$  zuordnet.
  • Teilgebiet $T_6$:   Auch dieses Gebiet kann man aufgrund der Ergebnisse von Aufgabe  (4)  und  (7)  sowohl der Region  $I_0$  als auch der Region  $I_1$  zuordnen.


Man erkennt:

  1. Für die Teilaufgabe  $T_0$, ... ,  $T_4$  gibt es eine feste Zuordnung zu den Entscheidungsregionen  $I_0$  (rot)  bzw.  $I_1$  (blau).
  2. Dagegen können die beiden gelb markierten Bereiche  $T_5$  und  $T_6$  ohne Verlust an Optimalität sowohl  $I_0$  als auch  $I_1$  zugeordnet werden.


Vergleicht man diese Grafik mit den Varianten  $\rm A$,  $\rm B$  und  $\rm C$  auf der Angabenseite,  so erkennt man,  dass die  Vorschläge 1 und 2  richtig sind:

  1. Die Varianten  $\rm A$  und  $\rm B$  sind gleich gut.  Beide sind optimal.  Die Fehlerwahrscheinlichkeit ergibt sich in beiden Fällen zu  $p_{\rm min} = {\rm e}^{\rm -2}$.
  2. Die Variante  $\rm C$  ist nicht optimal;  bezüglich der Teilgebiete  $T_1$  und  $T_2$  gibt es Fehlzuordnungen.  Die Fehlerwahrscheinlichkeit ist demzufolge größer als  $p_{\rm min}$.