Aufgabe 2.10Z: Rauschen bei ZSB-AM und ESB-AM

Aus LNTwww
Version vom 17. Februar 2022, 18:43 Uhr von Guenter (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

Gemeinsames Blockschaltbild für ZSB-AM und ESB-AM

Nun soll der Einfluss von Rauschen auf den Sinken–Störabstand  $10 · \lg ρ_v$  bei  "ZSB–AM"  bzw.  "ESB–AM"  vergleichend gegenübergestellt werden.  Die Grafik zeigt das zugrundeliegende Blockschaltbild.


Rot hervorgehoben sind in diesem Bild die Unterschiede zwischen den beiden Systemvarianten,  nämlich der Modulator  (ZSB bzw. ESB)  sowie die dimensionslose Konstante

$$ K = \left\{ \begin{array}{c} 2/\alpha_{\rm K} \\ 4/\alpha_{\rm K} \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{bei}} \\ {\rm{bei}} \\ \end{array}\begin{array}{*{20}c} {\rm ZSB} \hspace{0.05cm}, \\ {\rm ESB} \hspace{0.05cm} \\ \end{array}$$

des empfängerseitigen Trägersignals  $z_{\rm E}(t) = K · \cos(ω_{\rm T} · t)$,  das als frequenz- und phasensynchron mit dem Trägersignal  $z(t)$  beim Sender angenommen werden soll.

In grüner Farbe beschriftet sind diejenigen Systemkenngrößen, die in der gemeinsamen Leistungskenngröße zusammengefasst sind:

$$\xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$

Weiter ist zu beachten:

  • Das Cosinussignal  $q(t)$  mit der Frequenz  $B_{\rm NF}$  steht stellvertretend für ein aus mehreren Frequenzen zusammengesetztes Quellensignal der Bandbreite  $B_{\rm NF}$.
  • Der Zusammenhang zwischen der Sendeleistung  $P_{\rm S}$  und der Leistung  $P_{q}$  hängt unter anderem vom Modulationsverfahren ab.
  • Die ZSB–AM mit Träger wird durch den Modulationsgrad  $m = A_{\rm N}/A_{\rm T}$  parametrisiert,  während die ESB–AM durch das Seitenband–zu–Träger–Verhältnis  $μ = A_{\rm N}/(2 · A_{\rm T})$  bestimmt ist.
  • Der frequenzunabhängige Kanalübertragungsfaktor  $α_{\rm K}$  wird durch die Konstante  $K$  ausgeglichen,  so dass im rauschfreien Fall  $(N_0 = 0)$  das Sinkensignal  $v(t)$  mit dem Quellensignal  $q(t)$  übereinstimmt.
  • Das Sinken–SNR kann somit wie folgt angegeben werden  $(T_0$ gibt hierbei die Periodendauer des Quellensignals an$)$:
$$ \rho_{v } = \frac{P_{q}}{P_{\varepsilon }}\hspace{0.5cm}{\rm mit}\hspace{0.5cm} P_{q} = \frac{1}{T_{\rm 0}}\cdot\int_{0}^{ T_{\rm 0}} {q^2(t)}\hspace{0.1cm}{\rm d}t, \hspace{0.5cm}P_{\varepsilon} = \int_{-B_{\rm NF}}^{ +B_{\rm NF}} \hspace{-0.1cm}{\it \Phi_{\varepsilon}}(f)\hspace{0.1cm}{\rm d}f\hspace{0.05cm}.$$



Hinweise:


Fragebogen

1

Welche Demodulation wird hier betrachtet?

Synchrondemodulation.
Hüllkurvendemodulation.

2

Welcher Zusammenhang besteht zwischen den Größen  $ρ_v$  und  $ξ$  bei der  "ZSB–AM ohne Träger"  $(m → ∞)$?

Es gilt  $ρ_v = 2 · ξ$.
Es gilt  $ρ_v = ξ$.
Es gilt  $ρ_v = ξ/2$.

3

Welcher Zusammenhang besteht zwischen  $ρ_v$  und  $ξ$  bei der  "ESB–AM ohne Träger"  $(μ → ∞)$?

Es gilt  $ρ_v = 2 · ξ$.
Es gilt  $ρ_v = ξ$.
Es gilt  $ρ_v = ξ/2$.

4

Es gelte  $ξ = 10^4$.  Berechnen Sie den Sinken–Störabstand der  "ZSB–AM ohne Träger"  für den Modulationsgrad  $m = 0.5$  bzw.  $m = 1$.

$m = 0.5\text{:} \ \ 10 · \lg \ ρ_v \ = \ $

$\ \rm dB$
$m = 1.0\text{:} \ \ 10 · \lg \ ρ_v \ = \ $

$\ \rm dB$

5

Es gelte weiter  $ξ = 10^4$.  Berechnen Sie den Sinken–Störabstand der  "ESB–AM"  für den Parameter  $μ = 0.354$  bzw.  $μ = 0.707$.

$μ = 0.354\text{:} \ \ \ 10 · \lg \ ρ_v \ = \ $

$\ \rm dB$
$μ = 0.707\text{:} \ \ \ 10 · \lg \ ρ_v \ = \ $

$\ \rm dB$


Musterlösung

(1)  Es handelt sich um einen  Synchrondemodulator.  Richtig ist also der  Lösungsvorschlag 1.


(2)  Richtig ist der  Lösungsvorschlag 2:

  • Bei ZSB–AM ohne Träger gilt  $P_{\rm S} = P_q/2$.  Dies ist auch gleichzeitig die Leistung des Nutzanteils des Sinkensignals  $v(t)$.
  • Das Leistungsdichtespektrum  ${\it Φ}_ε(f)$  des Rauschanteils von  $v(t)$  ergibt sich aus der Faltung:
Rauschleistungsdichte bei ZSB-AM
Rauschleistungsdichte bei  OSB-AM
$${\it \Phi}_\varepsilon(f) = {\it \Phi}_{z{\rm E} }(f) \star {\it \Phi}_n (f) = \frac{1}{\alpha_{\rm K}^2} \cdot \big[\delta(f - f_{\rm T}) + \delta(f + f_{\rm T}) \big]\star {\it \Phi}_n (f) \hspace{0.05cm}.$$
  • Der Ausdruck  $\big[$ ... $\big]$  beschreibt das Leistungsdichtespektrum eines Cosinussignals mit der Signalamplitude  $K = 2$.
  • Mit  $1/α_K^2$  wird die Korrektur der Kanaldämpfung berücksichtigt.
  • Unter Berücksichtigung von  ${\it \Phi}_n(f) = N_0/2$  ergibt sich somit:
$${\it \Phi}_\varepsilon(f) = \frac{N_0}{\alpha_{\rm K}^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} P_\varepsilon = \int_{-B_{\rm NF}}^{+B_{\rm NF}} {{\it \Phi}_\varepsilon(f) }\hspace{0.1cm}{\rm d}f = \frac{2 \cdot N_0 \cdot B_{\rm NF}}{\alpha_{\rm K}^2}\hspace{0.05cm}.$$
  • Daraus folgt für das Signal-zu-Rausch-Leistungsverhältnis  $\rm (SNR)$:
$$\rho_{v } = \frac{P_{q}}{P_{\varepsilon }} = \frac{2 \cdot P_{\rm S}}{2 \cdot N_0 \cdot B_{\rm NF}/\alpha_{\rm K}^2} = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}\hspace{0.15cm}\underline { = \xi} \hspace{0.05cm}.$$


(3) Richtig ist der  Lösungsvorschlag 2:

  • Bei der ESB gilt im Gegensatz zur ZSB  $P_S = P_q/4$  sowie
$${\it \Phi}_\varepsilon(f) = {\it \Phi}_{z{\rm E} }(f) \star {\it \Phi}_n (f) = \frac{4}{\alpha_{\rm K}^2} \cdot \big[\delta(f - f_{\rm T}) + \delta(f + f_{\rm T}) \big]\star {\it \Phi}_n (f) \hspace{0.05cm}.$$
  • Unter Berücksichtigung von  $B_{\rm HF} = B_{\rm NF}$  (siehe nebenstehende Skizze für die OSB–Modulation) erhält man nun:
$${\it \Phi}_\varepsilon(f) = \frac{2 \cdot N_0}{\alpha_{\rm K}^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} P_\varepsilon = \frac{4 \cdot N_0 \cdot B_{\rm NF}}{\alpha_{\rm K}^2}\hspace{0.05cm}.$$
  • Das bedeutet:  Verzichtet man auf die Übertragung des Trägers, so zeigt die Einseitenbandmodulation genau das gleiche Rauschverhalten wie die ZSB–AM.


(4)  Ausgehend vom cosinusförmigen Träger mit der Amplitude  $A_{\rm T}$  und dem ebenfalls cosinusförmigen Nachrichtensignal  $q(t)$  erhält man bei ZSB–AM mit Träger:

$$ s(t) = \big (q(t) + A_{\rm T}\big ) \cdot \cos( \omega_{\rm T} \cdot t) = A_{\rm T} \cdot \cos( \omega_{\rm T} \cdot t) + \frac{A_{\rm N}}{2}\cdot \cos\big(( \omega_{\rm T}+ \omega_{\rm N}) \cdot t \big)+ \frac{A_{\rm N}}{2}\cdot \cos\big(( \omega_{\rm T}- \omega_{\rm N}) \cdot t\big)\hspace{0.05cm}.$$
  • Die Sendeleistung ergibt sich somit zu
$$ P_{\rm S}= \frac{A_{\rm T}^2}{2} + 2 \cdot \frac{(A_{\rm N}/2)^2}{2} = \frac{A_{\rm T}^2}{2} + \frac{A_{\rm N}^2}{4} \hspace{0.05cm}.$$
  • Unter Berücksichtigung von  $P_q = A_{\rm N}^2/2$  und  $m = A_{\rm N}/A_{\rm T}$  kann hierfür auch geschrieben werden:
$$P_{\rm S}= \frac{A_{\rm N}^2}{4} \cdot \left[ 1 + \frac{2 \cdot A_{\rm T}^2}{A_{\rm N}^2}\right] = \frac{P_q}{2} \cdot \left[ 1 + {2 }/{m^2}\right]\hspace{0.05cm}.$$
  • Mit der Rauschleistung  $P_ε$  gemäß der Teilaufgabe  (2)  erhält man somit:
$$\rho_{v } = \frac{P_{q}}{P_{\varepsilon }} = \frac{2 \cdot P_{\rm S}\cdot (1 + 2/m^2)}{2 \cdot N_0 \cdot B_{\rm NF}/\alpha_{\rm K}^2} = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}} \cdot \frac{1}{1 +{2 }/{m^2}} \hspace{0.05cm}.$$
  • Und in logarithmischer Darstellung:
$$ 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } = 10 \cdot {\rm lg} \hspace{0.15cm}\xi - 10 \cdot {\rm lg} \hspace{0.15cm}\left[{1 +{2 }/{m^2}}\right] \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \ (m = 0.5) = 40 \,{\rm dB} - 10 \cdot {\rm lg} (9) \hspace{0.15cm}\underline {= 30.46\, {\rm dB}}$$
$$\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \ (m = 1.0) = 40 \,{\rm dB} - 10 \cdot {\rm lg} (3) \hspace{0.15cm}\underline {= 35.23\, {\rm dB} \hspace{0.05cm}}.$$


(5)  Bei der ESB–AM gibt es nur ein Seitenband.

  • Deshalb gilt unter Berücksichtigung des Seitenband–zu–Träger–Verhältnisses  $μ = A_{\rm N}/(2A_{\rm T})$:
$$ P_{\rm S}= \frac{A_{\rm T}^2}{2} + \frac{(A_{\rm N}/2)^2}{2} = {A_{\rm N}^2}/{8} \cdot \big[ 1 + {4 \cdot A_{\rm T}^2}/{A_{\rm N}^2}\big] = {P_q}/{4} \cdot \big[ 1 + {1 }/{\mu^2}\big] \hspace{0.05cm}.$$
  • Somit erhält man mit der Rauschleistung entsprechend der Teilaufgabe  (3):
$$\rho_{v } = \frac{P_{q}}{P_{\varepsilon }} = \frac{4 \cdot P_{\rm S}\cdot (1 + 1/\mu^2)}{4 \cdot N_0 \cdot B_{\rm NF}/\alpha_{\rm K}^2} = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}} \cdot \frac{1}{1 +{1 }/{\mu^2}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } = 10 \cdot {\rm lg} \hspace{0.15cm}\xi - 10 \cdot {\rm lg} \hspace{0.15cm}\big[{1 +{1 }/{\mu^2}}\big] \hspace{0.05cm}.$$
  • Man erhält also bei der ESB–AM das gleiche Ergebnis wie bei einer ZSB–AM mit dem Modulationsgrad  $m = \sqrt{2} · μ$.  Daraus folgt weiter:
$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ESB,} \hspace{0.1cm}\mu = {0.5}/{\sqrt{2}}) = 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ZSB,} \hspace{0.1cm}m=0.5) \hspace{0.15cm}\underline {=30.46\,{\rm dB}},$$
$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ESB,} \hspace{0.1cm}\mu = {1.0}/{\sqrt{2}}) = 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ZSB,} \hspace{0.1cm}m=1.0) \hspace{0.15cm}\underline {=35.23\,{\rm dB}}\hspace{0.05cm}.$$