Aufgabe 3.5: Kullback-Leibler-Distanz & Binominalverteilung

Aus LNTwww
Wechseln zu:Navigation, Suche

Vorgegebene Wahrscheinlichkeiten

Wir gehen hier von der  Binomialverteilung  aus, die durch die Parameter  $I$  und  $p$  gekennzeichnet ist  
⇒   siehe Buch „Stochastische Signaltheorie”:

  • Wertebereich:
$$X = \{\hspace{0.05cm}0\hspace{0.05cm}, \hspace{0.15cm} 1\hspace{0.05cm},\hspace{0.15cm} 2\hspace{0.05cm},\hspace{0.15cm} \text{...}\hspace{0.1cm} ,\hspace{0.15cm} {\mu}\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm} , \hspace{0.15cm} I\hspace{0.05cm}\}\hspace{0.05cm},$$
  • Wahrscheinlichkeiten:
$$P_X (X = \mu) = {I \choose \mu} \cdot p^{\mu} \cdot (1-p)^{I-\mu} \hspace{0.05cm},$$
  • linearer Mittelwert:
$$m_X = I \cdot p \hspace{0.05cm},$$
  • Varianz:
$$\sigma_X^2 = I \cdot p \cdot (1-p)\hspace{0.05cm}.$$

Im rot hinterlegten Teil der Tabelle sind die Wahrscheinlichkeiten  $P_X(X = \mu$)  der betrachteten Binomialverteilung angegeben.  In der Teilaufgabe  (1)  sollen Sie die dazugehörigen Verteilungsparameter  $I$  und  $p$  bestimmen.


Diese vorgegebene Binomialverteilung soll hier durch eine  Poissonverteilung  $Y$  approximiert werden, gekennzeichnet durch die Rate  $\lambda$:

  • Wertebereich:
$$Y = \{\hspace{0.05cm}0\hspace{0.05cm}, \hspace{0.15cm} 1\hspace{0.05cm},\hspace{0.05cm} 2\hspace{0.05cm},\hspace{0.15cm} \text{...}\hspace{0.1cm} ,\hspace{0.15cm} {\mu}\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm}\}\hspace{0.05cm},$$
  • Wahrscheinlichkeiten:
$$P_Y (Y = \mu) = \frac{\lambda^{\mu}}{\mu !} \cdot {\rm e}^{\lambda} \hspace{0.05cm},$$
  • Erwartungswerte:
$$m_Y = \sigma_Y^2 = \lambda\hspace{0.05cm}.$$

Um abschätzen zu können, ob die Wahrscheinlichkeitsfunktion  $P_X(X)$  ausreichend gut durch  $P_Y(Y)$  approximiert wird, kann man auf die so genannten  Kullback–Leibler–Distanzen  (KLD)  zurückgreifen, in der Literatur teilweise auch  „relative Entropien”  genannt.

Angepasst an das vorliegende Beispiel lauten diese:

$$D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y) \hspace{0.15cm} = \hspace{0.15cm} {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_X(X)}{P_Y(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 0}^{I} P_X(\mu) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_X(\mu)}{P_Y(\mu)} \hspace{0.05cm},$$
Beiliegende Ergebnistabelle
$$D(P_Y \hspace{0.05cm}|| \hspace{0.05cm} P_X) \hspace{0.15cm} = \hspace{0.15cm} {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_Y(X)}{P_X(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 0}^{\infty} P_Y(\mu) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_Y(\mu)}{P_X(\mu)} \hspace{0.05cm}.$$

Bei Verwendung von  $\log_2$  ist dem Zahlenwert die Pseudo–Einheit „bit” hinzuzufügen.

In nebenstehender Tabelle ist die Kullback–Leibler–Distanz  $D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y)$  (in „bit”) zwischen der Binomial–PMF  $P_X(\cdot)$  und einigen Poisson–Näherungen  $P_Y(\cdot)$  $($mit fünf verschiedenen Raten $\lambda)$  eingetragen.

  • Die jeweilige Entropie  $H(Y)$, die ebenfalls von der Rate  $\lambda$  abhängt, ist in der ersten Zeile angegeben.
  • Die Spalten für  $\lambda = 1$  sind in den Teilaufgaben  (3)  und (4)  zu ergänzen.
  • In der Teilaufgabe  (6)  sollen diese Ergebnisse interpretiert werden.



Hinweise:

  • Um die numerischen Berechnungen in Grenzen zu halten, werden folgende Hilfsgrößen vorgegeben;  hierbei bezeichnet  $\rm \lg$  den Logarithmus zur Basis  $10$:
$$A' = 0.4096 \cdot {\rm lg} \hspace{0.1cm} \frac{0.4096}{0.3679} + 0.2048 \cdot {\rm lg} \hspace{0.1cm} \frac{0.2048}{0.1839} + 0.0512 \cdot {\rm lg} \hspace{0.1cm} \frac{0.0512}{0.0613} + 0.0064 \cdot {\rm lg} \hspace{0.1cm} \frac{0.0064}{0.0153} + 0.0003 \cdot {\rm lg} \hspace{0.1cm} \frac{0.0003}{0.0031} \hspace{0.05cm},$$
$$B' = 0.1839 \cdot {\rm lg} \hspace{0.1cm} (0.1839) + 0.0613 \cdot {\rm lg} \hspace{0.1cm} (0.0613) + 0.0153 \cdot {\rm lg} \hspace{0.1cm} (0.0153) + 0.0031 \cdot {\rm lg} \hspace{0.1cm} (0.0031) + 0.0005 \cdot {\rm lg} \hspace{0.1cm} (0.0005) + 0.0001 \cdot {\rm lg} \hspace{0.1cm} (0.0001)$$
$$\Rightarrow \hspace{0.3cm} A' \hspace{0.15cm} \underline {= 0.021944} \hspace{0.05cm},\hspace{0.5cm} B' \hspace{0.15cm} \underline {= -0.24717} \hspace{0.05cm}.$$


Fragebogen

1

Wie lauten die Kenngrößen der vorliegenden Binomialverteilung?  Hinweis: Geben Sie (maximal) eine Nachkommastelle ein.

$I \hspace{0.47cm} = \ $

$p \hspace{0.47cm} = \ $

$m_x \ = \ $

$\sigma^2_x \hspace{0.25cm} = \ $

2

Welche Kullback–Leibler–Distanz sollte man hier verwenden?

Keine der beiden Distanzen ist anwendbar.
$D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y)$  ist besser geeignet.
$D(P_Y \hspace{0.05cm}|| \hspace{0.05cm} P_X)$  ist besser geeignet.
Beide Kullback–Leibler–Distanzen sind anwendbar.

3

Berechnen Sie die geeignete Kullback–Leibler–Distanz  $($hier mit  $D$  abgekürzt$)$  für  $\lambda = 1$.  Berücksichtigen Sie die Hilfsgröße  $A\hspace{0.05cm}'$.

$D \ = \ $

$\ \rm bit$

4

Berechnen Sie die Entropie  $H(Y)$  der Poisson–Näherung mit der Rate  $\lambda = 1$.  Berücksichtigen Sie die Hilfsgröße  $B\hspace{0.05cm}'$.

$H(Y) \ = \ $

$\ \rm bit$

5

Welche der folgenden Aussagen sind zutreffend?

Bei der  $H(Y)$–Berechnung haben alle Terme gleiches Vorzeichen.
Bei der  $D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y)$–Berechnung haben alle Terme gleiches Vorzeichen.

6

Wie interpretieren Sie die vervollständigte Ergebnistabelle?

Nach der Kullback–Leibler–Distanz sollte man  $\lambda = 1$  wählen.
$\lambda = 1$  garantiert die beste Approximation  $H(Y) ≈ H(X)$.


Musterlösung

(1)  Bei der Binomialverteilung sind alle Wahrscheinlichkeiten  ${\rm Pr}(X > I) = 0$   ⇒   $\underline{I = 5}$.  Damit ergibt sich für die Wahrscheinlichkeit, dass  $X =I = 5$  ist:

$${\rm Pr} (X = 5) = {5 \choose 5} \cdot p^{5} = p^{5} \approx 0.0003 \hspace{0.05cm}.$$

Somit erhält man für

  • die charakteristische Wahrscheinlichkeit:   $p= (0.0003)^{1/5} = 0.1974 \hspace{0.15cm} \underline {\approx 0.2}\hspace{0.05cm},$
  • den linearen Mittelwert (Erwartungswert):   $m_X = I \cdot p \hspace{0.15cm} \underline {= 1}\hspace{0.05cm},$
  • die Varianz:   $\sigma_X^2 = I \cdot p \cdot (1-p) \hspace{0.15cm} \underline {= 0.8}\hspace{0.05cm}.$



(2)  Richtig ist der Lösungsvorschlag 2:

  • Bei Verwendung von  $D(P_Y \hspace{0.05cm}|| \hspace{0.05cm} P_X)$  würde sich unabhängig von  $λ$  stets ein unendlicher Wert ergeben, da für  $\mu ≥ 6$  gilt:
$$P_X (X = \mu) = 0 \hspace{0.05cm},\hspace{0.3cm}P_Y (Y = \mu) \ne 0 \hspace{0.05cm}.$$
  • Auch wenn die Wahrscheinlichkeiten  $P_Y (Y = \mu)$  für große  $μ$  sehr klein werden, sind sie doch „unendlich viel größer” als  $P_X (X = \mu)$.



(3)  Wir verwenden die erste Kullback–Leibler–Distanz:

$$D = D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y) =\hspace{0.2cm} \sum_{\mu = 0}^{5} P_X(\mu) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_X(\mu)}{P_Y(\mu)} \hspace{0.05cm}.$$
  • Bei Verwendung des Zehnerlogarithmus  $(\lg)$  erhalten wir für die Poisson–Näherung mit  $\lambda = 1$:
$$D \hspace{0.05cm}' = 0.3277 \cdot {\rm lg} \hspace{0.1cm} \frac{0.3277}{0.3679} + A \hspace{0.05cm}' = -0.016468 + 0.021944 = 0.005476 \hspace{0.05cm}.$$
  • Nach Umrechnung auf den Zweierlogarithmus  $(\log_2)$  erhält man schließlich:
$$D = D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y) = \frac{0.005476}{{\rm lg} \hspace{0.1cm}(2)} \hspace{0.15cm} \underline {\approx 0.0182\ {\rm (bit)}}\hspace{0.05cm}.$$


(4)  Unter Verwendung des Zehnerlogarithmus lautet die Entropie der Poisson–Näherung  $(\lambda = 1)$:

$$H\hspace{0.05cm}'(Y) = -{\rm E} \left [{\rm lg} \hspace{0.1cm} {P_Y(Y)} \right ] = -2 \cdot 0.3679 \cdot {\rm lg} \hspace{0.1cm} (0.3679) - B\hspace{0.05cm}' = 0.31954 + 0.24717 = 0.56126.$$
  • Die Umrechnung in „bit” liefert das gesuchte Ergebnis:
$$H(Y) = \frac{0.56126}{{\rm lg} \hspace{0.1cm}(2)} \hspace{0.15cm} \underline {= 1.864\ {\rm (bit)}} \hspace{0.05cm}.$$


(5)  Richtig ist die Aussage 1.  Bei der numerischen Berechnung der Kullback–Leibler–Distanz ist

  • der Beitrag des  $μ$–ten Terms positiv, falls  $P_Y(\mu) > P_X(\mu)$,
  • der Beitrag des  $μ$–ten Terms negativ, falls  $P_Y(\mu) < P_X(\mu)$.


Kullback–Leibler–Distanz und Entropie


(6)  Zutreffend ist der Lösungsvorschlag 1:

  • Auch aus der Grafik ist ersichtlich, dass  $D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y) =0.0182$  bit  von keinem anderen  $λ$–Wert als  $λ = 1$  unterschritten wird (grüne Kreuze).
  • Weiter erkennt man aus dieser Darstellung, dass man mit  $λ = 0.9$  eine bessere Entropie–Approximation als mit  $λ = 1$  erreicht (blaue Kreise):
$$H(Y) = 1.795\ {\rm bit} \hspace{0.15cm}\approx \hspace{0.15cm} H(X) = 1.793\ {\rm bit}\hspace{0.05cm}.$$
Der zweite Lösungsvorschlag ist also falsch.
  • Mit  $λ = 1$  stimmen die  linearen Mittelwerte  der beiden Zufallsgrößen überein:
$$m_X = m_Y= 1.$$
  • Mit  $λ = 0.9$ stimmen die  quadratischen Mittelwerte  überein:
$$m_X + \sigma_X^2 = m_Y + \sigma_Y^2= 1.8.$$

Ob diese Aussage relevant ist, lassen wir dahingestellt.  Denn:   Aufgrund der stetigen Zunahme von  $H(Y)$  mit zunehmendem  $λ$  ist klar, dass für irgendeinen  $λ$–Wert tatsächlich  $H(Y) = H(X)$  gelten muss.