Processing math: 100%

Exercise 2.5Z: Multi-Path Scenario

Aus LNTwww
Wechseln zu:Navigation, Suche

Mobilfunk–Szenario mit drei Pfaden

In  Task 2.5  a delay–Doppler–function was given. From this, we will calculate and interpret the other system functions. The given scatter function  s(τ0,fD)  was

s(τ0,fD)=12δ(τ0)δ(fD100Hz)  
  12δ(τ01μs)δ(fD50Hz) 12δ(τ01μs)δ(fD+50Hz).


Note:   In our learning tutorial,  s(τ0,fD)  is also identified with  ηVD(τ0,fD) .

Here we have replaced the delay variable  τ  with  τ0 . The new variable  τ0  describes the difference between the delay of a path and the delay  τ1  of the main path. The main path is thus identified in the above equation by  τ0=0 .

Now, we try to find a mobile radio scenario in which this scatter function would actually occur. The basic structure is sketched above as a top view, and the following hold:

  • A single frequency is transmitted  fS=2 GHz.
  • The mobile receiver  (E)  is represented here by a yellow dot. It is not known whether the vehicle is stationary, moving towards the transmitter  (S)  or moving away from it.
  • The signal reaches the receiver via a main path (red) and two secondary paths (blue and green). Reflections from the obstacles cause phase shifts of  π.
  • S2  and  S3  are to be understood here as fictitious transmitters from whose position the angles of incidence  α2  and  α3  of the secondary paths can be determined.
  • Let the signal frequency be   fS, the angle of incidence   α, the velocity  v  and the velocity of light  c=3108 m/s. Then, the Doppler frequency is
fD=v/cfScos(α).
  • The damping factors  k1k2  and  k3  are inversely proportional to the path lengths  d1d2  and  d3. This corresponds to the path loss exponent  γ=2.
  • This means:   The signal power decreases quadratically with distance  d  and accordingly the signal amplitude decreases linearly with  d.




Notes:



Questionnaire

1

At first, consider only the Dirac function at  τ=0  and  fD=100 Hz. Which statements apply to the recipient?

The receiver is standing.
The receiver moves directly towards the transmitter.
The receiver moves away in the opposite direction to the transmitter.

2

What is the vehicle speed?

v = 

  km/h

3

Which statements apply to the Dirac at  τ0=1  µs  and  fD=+50  Hz?

This Dirac comes from the blue path.
This Dirac comes from the green path.
The angle  is  30.
The angle  is  60.

4

What statements apply to the green path?

For this,  τ0=1  µs  and  fD=50  Hz.
The angle  α3  (see graphic) is  60.
The angle  α3  is  240.

5

What are the relations between the two side paths?

It applies  d3=d2.
It is  k3=k2.
It is  τ3=τ2.

6

What is the difference in time  Δd=d2d1?

 Deltad = 

  m

7

What is the relationship between  d2  and  d1?

d2/d1 = 

8

Indicate the distances  d1  and  d2 .

d1 = {724 3% }   m
d2 = 

  m


Sample solution

(1)  The Doppler frequency is positive for τ0. This means that the receiver is moving towards the transmitter   ⇒   statement 2.


(2)  The equation for the Doppler frequency is general or for the angle α=0.

fD=vcfScos(α),α=0:fD=vcfS.
  • This is what you get for speed:
$$v = \frac{f_{\rm D}}}{f_{\rm S} \cdot c = \frac{10^2\,{\rm Hz}}}{2 \cdot 10^9\,{\rm Hz}} \cdot 3 \cdot 10^8\,{\rm m/s} = 15\,{\rm m/s} \hspace{0.1cm} \underline {= 54 \,{\rm km/h} \hspace{0.05cm}.$$


(3)  Correct are the solutions 1 and 4:

  • The Doppler frequency fD=50 Hz comes from the blue path, because the receiver somehow moves towards the virtual transmitter S2 (at the reflection point), although not in a direct direction.
  • The angle α2 between the direction of movement and the connecting line S2E is 60:
\cos(\alpha_2) = \frac{f_{\rm D}}}{f_{\rm S}} \cdot \frac{c}{v} = \frac{50 \,{\rm Hz}\cdot 3 \cdot 10^8\,{\rm m/s}}}{2 \cdot 10^9\,{\rm Hz}\cdot 15\,{\rm m/s}} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \alpha_2
  \hspace{0.1cm} \underline {= 60^{\circ} } 
  \hspace{0.05cm}.


(4)  Correct are the statements 1 and 3:

  • From fD=50 Hz follows α3=α2±π, so α3 =240_.


(5)  All statements are correct:

  • The two Dirac functions at ±50  Hz have the same running time. For both durations τ3=τ2=τ1+τ0 is valid.
  • From the same transit time, however, also follows  d3=d2  and with the same length also the same damping factors.


(6)  The runtime difference is τ0=1 µs, as shown in the equation for s(τ0,fD).

  • This gives the difference in length:
Δd=τ0c=106s3108 m/s  =300  m_.


(7)  The path loss exponent was assumed to be γ=2 for this task.

  • Then k1=K/d1 and k2=K/d2.
  • The minus sign takes into account the 180–phase rotation on the secondary paths.
  • From the weights of the Dirac functions one can read k1=0.5 and k2=0.5. From this follows:
\2d1=k1k2=1/20.5=2=1,414_.
  • The constant K is only an auxiliary variable that does not need to be considered further.


(8)  Aus  d2/d1=20.5  and  Δd=d2d1=300 m  finally follows:

\sqrt{2} \cdot d_1 - d_1 = 300\,{\rm m} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
  d_1 = \frac{300\,{\rm m}}}{\sqrt{2} - 1}   \hspace{0.15cm} \underline {= 724\,{\rm m}} 
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} d_2 = \sqrt{2} \cdot d_1 \hspace{0.15cm} \underline {= 1024\,{\rm m}}
  \hspace{0.05cm}.