Processing math: 100%

Exercise 1.2Z: Lognormal Fading Revisited

Aus LNTwww
Wechseln zu:Navigation, Suche

Path loss model
with lognormal fading

We assume similar conditions as in   Task 1. 2  but now we summarize the purely distance-dependent path loss  V0  and the mean value  mS  of the lognormal–fading (the index „S” stands for Shadowing): V1=V0+mS.

The total path loss is then given by the equation VP=V1+V2(t)

where  V2(t)  describes a lognormal–distribution  with mean value zero: fV2(V2)=12πσSexp[V222σ2S].

The path loss model shown in the graphic is suitable for the scenario described here:

  • Multiply the transmitted signal  s(t)  first with a constant factor  k1  and further with a stochastic quantity  z2(t)  with the probability density function (PDF)  fz2(z2), then the signal  r(t) results at the output, whose power  PE(t)  is of course also time-dependent due to the stochastic component.
  • The PDF of the lognormally distributed random variable  z2  is for  z20:

fz2(z2)=exp[ln2(z2)/(2C2σ2S)]2πCσSz2withC=ln(10)20dB.

  • For  z20  this PDF is equal to zero.




Notes:

V1=60dB,σS=6dB.

  • The probability that a mean-free Gaussian random variable  z  is greater than its standard deviation  σ, is

Pr(z>σ)=Pr(z<σ)=Q(1)0.158.

  • Also,   Pr(z>2σ)=Pr(z<2σ)=Q(2)0.023.
  • Again for clarification:   z2  is the linear fading–size, while capital letters  V2  denote logarithmic units.
  • The following conversions apply:

z2=10V2/20dB,V2=20dBlgz2.


Questionnaire

1

How large should the constant  k1  be?

k1 = 

2

Which value range applies to the random variable  z2?

All values between  and +  are possible.
The random size  z2  is not negative.
The smallest possible value is  z2=0.5.
The largest possible value is  z2=2.

3

Calculate the WDF  fz2(z2)  for some abscissa values.

fz2(z2=0) = 

fz2(z2=1) = 

fz2(z2=2) = 

4

Calculate the following probabilities.

Pr(z2>1.0) = 

Pr(z2>0.5) = 

Pr(z2>4.0) = 

5

What statements are valid for the average receiving power  E[PE(t)]?
Note:  PE is the power after multiplication by  k1  (see diagram).

The following applies:   E[PE(t)]=PE
It reads:   E[PE(t)]<PE.
It reads:   E[PE(t)]>PE.


Sample solution

(1)  The constant k1 generates the time-independent path loss V1=60 dB. From this follows: k1=10V1/(20dB)=0.001_.


(2)  Correct is only the second solution suggestion:

  • For the Gaussian random variable V2 all values between and + are (theoretically) possible.
  • The transformation z2=10V2/20 results in only positive values for the linear random variable z2, namely between 0 (if V2 is positive and reaches to infinity) and + (very large negative values of V2).


'(3)  The random value z2 can only be positive. Therefore the WDF–value fz2(z2=0)is=0_.

  • Der WDF–Wert für den Abszissenwert z2=1 erhält man durch Einsetzen in die gegebene Gleichung:
fz2(z2=1) = exp[ln2(z2=1)/(2C2σ2S)]2πCσS(z2=1)=12πσS1C=12π6dB20dBln(10)0.578_.
  • Der erste Anteil ist gleich dem WDF–Wert fV2(V2=0).
  • C berücksichtigt den Betrag der Ableitung der nichtlinearen Kennlinie z2=g(V2) für V2=0 dB bzw. z2=1.
  • Schließlich erhält man für z2=2:
fz2(z2=2) = fz2(z2=1)z2=2exp[ln2(2)2C2σ2S]=0.5782exp[0.480.952]0.174_.


(4)  Berücksichtigt man den Zusammenhang zwischen z2 und V2, so erhält man:

Pr(z2>1) = Pr(V2<0dB)=0.5_,
Pr(z2>0.5) = Pr(V2<6dB)=1Pr(V2>6dB)=1Pr(V2>σS)=1Q(1)=0.842_,
Pr(z2>4) = Pr(V2<12dB)=Pr(V2>+12dB)=Pr(V2>2σS).
  • Die Wahrscheinlichkeit, dass eine Gaußvariable größer ist als 2σ, ist aber gleich Q(2):
Pr(z2>4)=Q(2)=0.023_.


(5)  Richtig ist der Lösungsvorschlag 3:

  • Die erste Aussage ist mit Sicherheit nicht zutreffend, da sich der Mittelwert mS auf die logarithmierte Empfangsleistung (in dBm) bezieht.
  • Um zu klären, ob nun die zweite oder die dritte Lösungsalternative zutrifft, gehen wir von PS=1 W, V1=60 dB  ⇒  PE=1 µW und folgender V2–WDF aus:
fV2(V2)=0.5δ(V2)+0.25δ(V210dB)+0.25δ(V2+10dB).
  • In der Hälfte der Zeit ist dann PE=1 µW, während in den beiden anderen Vierteln jeweils gilt:
V2=+10dB:PE(t) = 1W107=0.1µW,
V2=10dB:PE(t) = 1W105=10µW.
  • Der Mittelwert ergibt somit:
E[PE(t)]=0.51µW+0.250.1µW+0.2510µW=3.025µW>PE=1µW.
  • Diese einfache Rechnung mit diskreten Wahrscheinlichkeiten anstelle einer kontinuierlichen WDF deutet darauf hin, dass der Lösungsvorschlag 3 richtig sein wird.
  • The WDF–value for the abscissa value z2=1 is obtained by inserting it into the given equation:

f_{z{\rm 2}}(z_{\rm 2} = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \frac {\rm exp } \left [ - {\rm ln}^2 (z_2 = 1) /({2 \cdot C^2 \cdot \sigma_{\rm S}^2}) \right ]}{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot (z_2 = 1)}=\frac {1}{ \sqrt{2 \pi } \cdot \sigma_{\rm S} }  \cdot \frac {1}{C } =
 \frac {1}{ \sqrt{2 \pi } \cdot 6\,\,{\rm dB} }  \cdot \frac {20\,\,{\rm dB}}}{ {\rm ln} \hspace{0.1cm}(10) }  
 \hspace{0.15cm} \underline{\approx 0.578}\hspace{0.05cm}.

  • The first portion is equal to the WDF–value $f_{{{\it V}2}(V_2 = 0)$.
  • C considers the amount of the derivative of the non-linear characteristic z2=g(V2) for V2=0 dB or z2=1.
  • Finally, for z2=2:

$$f_{z{\rm 2}}(z_{\rm 2} = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {f_{z{\rm 2}}}(z_{\rm 2} = 1)}{ z_{\rm 2} = 2} \cdot {\rm exp } \left [ - \frac {{{\rm ln}^2 (2)}{2 \cdot C^2 \cdot \sigma_{\rm S}^2} \right ]= \frac {0.578}{ 2} \cdot {\rm exp } \left [ - \frac {0.48}{0.952} \right ] \hspace{0.15cm} \underline{\approx 0.174}\hspace{0.05cm}. $$


(4)  If you take into account the relationship between z2 and V2, you get Pr(z2>1) = Pr(V2<0dB)=0.5_, Pr(z2>0.5) = Pr(V2<6dB)=1Pr(V2>6dB)=1Pr(V2>σS)=1Q(1)=0.842_, Pr(z2>4) = Pr(V2<12dB)=Pr(V2>+12dB)=Pr(V2>2σS).

  • The probability that a Gaussian variable is greater than 2σ, but equals Q(2):

Pr(z2>4)=Q(2)=0.023_.


(5)  Correct is the solution 3:

  • The first statement is certainly not correct, since the mean value mS refers to the logarithmic received power (in dBm).
  • To clarify whether the second or the third solution alternative is correct, we assume PS=1  W, V1=60  dB  ⇒  PE=1 µW and the following V2–WDF

fV2(V2)=0.5δ(V2)+0.25δ(V210dB)+0.25δ(V2+10dB).$Halfwaythroughthetime,$PE=1  µW$,whileintheothertwoquarters,eachisvalid:V_{\rm 2}= +10\,\,{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^7} = 0.1\,\,{\,}{\rm µ W}\hspace{0.05cm},V_{\rm 2}= -10\,\,{\,}{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^5} = 10\,\,{\,}{\rm µ W}\hspace{0.05cm}.Themeanvaluethusgives:{\rm E}[P_{\rm E}(t)] = 0.5 \cdot 1\,{\rm µ W}+ 0.25 \cdot 0.1\,{\rm µ W}+ 0.25 \cdot 10\,{\rm µ W}= 3.025\,{\rm µ W} > P_{\rm E}\hspace{0.05cm}' = 1\,{\rm µ W}

\hspace{0.05cm}.$$
  • This simple calculation with discrete probabilities instead of a continuous WDF indicates that the solution 3 will be correct.