Allgemeine Beschreibung von OFDM
Inhaltsverzeichnis
Das Prinzip von OFDM – Systembetrachtung im Zeitbereich
Orthogonal Frequency Division Multiplex (OFDM) ist ein digitales Mehrträger–Modulationsverfahren mit folgenden Eigenschaften:
- Statt eines breitbandigen, stark modulierten Signals werden zur Datenübertragung eine Vielzahl schmalbandiger, zueinander orthogonaler Unterträger verwendet. Dies ermöglicht unter anderem die Anpassung an einen frequenzselektiven Kanal.
- Die Modulation der Unterträger selbst erfolgt bei OFDM üblicherweise durch eine herkömmliche Quadratur–Amplitudenmodulation (QAM) oder durch binäre Phasenmodulation (BPSK), wobei sich die einzelnen Träger hinsichtlich der Modulationsart durchaus unterscheiden können.
- Unterschiede im Modulationsgrad führen dabei zu verschieden hohen Datenraten der Unterträger. Das heißt also, dass ein hochratiges Quellensignal zur Übertragung in mehrere Signale von deutlich niedrigerer Symbolrate aufgespaltet werden muss.
Die Grafik zeigt das Grundprinzip eines OFDM–Senders, basierend auf 4–QAM. Die Darstellung des „nullten” Zweiges (μ=0), der den Gleichanteil darstellt, wurde hier bewusst weggelassen, da dieser häufig zu Null gesetzt wird ⇒ für alle Rahmen k gilt a0,k= 0.
- Die N–1 Teile des zur Zeit k anliegenden Datenstroms 〈qμ,k〉 werden zunächst 4–QAM–codiert, indem jeweils zwei Bit zusammengefasst werden. Danach wird die im Allgemeinen komplexe Amplitude aμ,k (mit Laufvariablen μ=1, ... , N–1) impulsgeformt und mit dem μ–ten Vielfachen der Grundfrequenz f0 moduliert.
- Das Sendesignal ist nun die additive Überlagerung der einzelnen Teilsignale. Die Betrachtung erfolgt hier und auch im Folgenden im äquivalenten Tiefpassbereich, wobei auf den Index „TP” verzichtet wird.
- Das Impulsformfilter gs(t) ist ein auf den Bereich 0≤t<T begrenztes Rechteck der Höhe s0. Wir nennen T die Symboldauer und bezeichnen den Kehrwert f0=1/T als die Grundfrequenz.
Fasst man dieses Filter nun mit der jeweiligen Modulation zu
- gμ(t)={s0⋅ej2πμf0t0≤t<T,0sonst
mit μ∈{0, ... ,N–1} zusammen, so ergibt sich das OFDM–Sendesignal sk(t) im k–ten Zeitintervall:
- sk(t)=N−1∑μ=0aμ,k⋅gμ(t−k⋅TR).
Das gesamte OFDM–Sendesignal unter Berücksichtigung aller Zeitintervalle lautet dann:
- s(t)=+∞∑k=−∞N−1∑μ=0aμ,k⋅gμ(t−k⋅TR).
TR bezeichnet die Rahmendauer. Innerhalb dieser Zeit liegen die gleichen Daten am Eingang an und nach TR folgt der nächste Rahmen.
Die Symboldauer T ergibt sich bei einem Mehrträgersystem mit der Anzahl M der QAM–Signalraumpunkte und der Bitdauer TB der binären Quellensysmbole allgemein zu
- T=N⋅log2(M)⋅TB,
wobei N wieder die Anzahl der Unterträger angibt. Für die Rahmendauer muss TR≥T gelten. Zunächst gelte TR=T.
Beispiel 1: Wir gehen von einem Einträgersystem mit der Datenrate RB=768 kbit/s ⇒ TB≈1.3 µs und einem Mapping mit M=4 Signalraumpunkten (4–QAM) aus. Die Symboldauer im Einträgerfall (Single Carrier, SC) beträgt dann:
- TSC=1⋅log2(4)⋅1.3µs≈2.6µs.
Unter der Annahme, dass für ein Mehrträgersystem (Multi Carrier, MC) mit N= 32 Trägern das Modulationsverfahren 16–QAM verwendet wird, ergibt sich dagegen die Symboldauer zu
- TMC=32⋅log2(16)⋅1.3µs≈0.167ms.
Die Symboldauer T ist in diesem Fall um den Faktor 64 größer.
Fazit: Die Dauer eines Symbols erhöht sich bei einem Mehrträgersystem im Vergleich zu einem Einzelträgersystem deutlich, wodurch der störende Einfluss der Kanalimpulsantwort verringert wird und die Impulsinterferenzen abnehmen.
Die Möglichkeit, für verschiedene Teilbänder unterschiedlich robuste Modulationsverfahren einzusetzen, ist einer der großen Vorteile von OFDM. Hierauf wird in den Abschnitten OFDM für 4G–Netze und Digital Subscriber Line (DSL) noch näher eingegangen.
Systembetrachtung im Frequenzbereich bei akausalem Grundimpuls
Wir betrachten nochmals das OFDM–Sendesignal im k–ten Zeitintervall, wobei wir wieder TR=T setzen:
- sk(t)=N−1∑μ=0aμ,k⋅gμ(t−k⋅T).
Den Grundimpuls gμ(t) nehmen wir vereinfachend symmetrisch um t=0 an. Dann gilt mit f0=1/T:
- gμ(t)={s0⋅ej2πμf0t−T/2<t<T/2,0sonst.
Im Spektralbereich korrespondiert eine solche akausale und mit einer (komplexen) Exponentialfunktion der Frequenz μ·f0 modulierte Rechteckfunktion mit einer um μ·f0 verschobenen si–Funktion:
- Gμ(f)=s0⋅T⋅si(πT(f−μf0)).
Die Grafik zeigt diese Spektralfunktion (normiert auf den Maximalwert s0·T) für μ=5.
Der Pfeil soll andeuten, dass im Falle eines zeitlich nicht beschränkten Grundimpulses die dargestellte si–Funktion durch einen Dirac–Impuls an der Stelle μ·f0 zu ersetzen wäre.
Fazit: Sind alle Amplitudenkoeffizienten aμ,k≠0, so setzt sich das Spektrum Sk(f) des Sendesignals im k–ten Zeitbereichsintervall aus N um jeweils ein Vielfaches der Grundfrequenz f0 verschobenen si–Funktionen zusammen. Die Funktion si(x)=sin(x)/x wird oft als Spaltfunktion bezeichnet.
Systembetrachtung im Frequenzbereich bei kausalem Grundimpuls
Berücksichtigt man weiter, dass in der Realität von einem kausalen Grundimpuls
- gμ(t)={s0⋅ej2πμf0t0≤t<T,0sonst,
ausgegangen werden muss, so ergibt sich das Spektrum zu
- Sk(f)=s0⋅T⋅N−1∑μ=0aμ,k⋅si(π⋅T(f−μ⋅f0))⋅e−j2π⋅T/2⋅(f−μ⋅f0).
Die komplexe Exponentialfunktion kommt durch die Grenzen des hier zur Impulsformung verwendeten Rechtecks im Zeitbereich 0 ... T zustande (Verschiebung um T/2). Die vorher gezeigte rein reelle si–Funktion würde hingegen dem nichtkausalen Rechteck von −T/2 ... +T/2 entsprechen.
Die Grafik zeigt exemplarisch das Betragsspektrum eines OFDM–Signals mit fünf Trägern.
- Auffallend ist, dass das Maximum eines jeden Subträgers mit den Nullstellen aller anderen Träger zusammenfällt. Dies entspricht der ersten Nyquistbedingung im Frequenzbereich.
- Diese Eigenschaft ermöglicht eine ICI–freie Abtastung (das heißt: ohne Intercarrier–Interferenz) des Spektrums bei Vielfachen von f0. Die Orthogonalität ist also gewährleistet.
- Würde man auf die Zeitbegrenzung bei der Impulsformung verzichten, so würden aus den dargestellten si–Funktionen im Abstand f0 jeweils Diraclinien (in der Grafik grau eingezeichnet).
- Diese idealisierende Vereinfachung ist in der Praxis leider nicht umsetzbar. Die Forderung T→∞ bedeutet nämlich gleichzeitig, dass in unendlich langer Zeit nur ein einziger Rahmen übertragen werden könnte.
Fazit: Ein OFDM–Signal unter der Voraussetzung einer rechteckförmigen Impulsformung und eines Unterträgerabstandes von f0 erfüllt die erste Nyquistbedingung im Zeitbereich und dadurch natürlich ebenso die erste Nyquistbedingung im Frequenzbereich.
Orthogonalitätseigenschaften der Träger
Die Zeitbegrenzung des Grundimpulses ermöglicht die separate Betrachtung der beiden Summen in der Gleichung des OFDM–Sendesignals:
- s(t)=+∞∑k=−∞sk(t)mitsk(t)=N−1∑μ=0aμ,k⋅gμ(t−k⋅T).
Der k–te Sendeimpuls ist dabei die Summe der um k·T verschobenen Grundimpulse gμ(t), die jeweils mit den μ–ten Amplitudenkoeffizienten des QAM–Coders zum Zeitpunkt k gewichtet werden. Damit ergibt sich für das Spektrum Sμ,k(f) des μ–ten Trägers im k–ten Intervall:
- Sμ,k(f)=s0⋅aμ,k⋅T⋅si(π⋅T(f−μ⋅f0))⋅e−jπ⋅T⋅(f−μ⋅f0).
Dabei gelten folgende für das OFDM-Prinzip wichtige Eigenschaften:
- Die Sendeimpulse sk(t) sind zueinander orthogonal in der Zeit (Laufvariable k), da sie sich durch die Zeitbegrenzung des Impulsformfilters gs(t) zeitlich nicht überlappen.
- Die zeitliche Begrenzung der Impulse führt zwar zu einer spektralen Überlappung, aber dennoch besteht auch Orthogonalität bezüglich der Träger (Laufvariable μ) wegen:
- Sk(μ⋅f0)=Sμ,k(μ⋅f0)=s0⋅aμ,k⋅T.
Beweis: Für die Orthogonalität an den Frequenzstützstellen μ·f0 muss gelten:
- S(μ⋅f0)=S0(μ⋅f0)+ ... +Sμ(μ⋅f0)+ ... +SN−1(μ⋅f0)=Sμ(μ⋅f0).
Hier und im Folgenden wird auf den Index k der Rahmennummer verzichtet. Aus
- sμ(t)=s0⋅aμ⋅ej⋅2π⋅μ⋅f0⋅t⋅rect(t−T/2T)undSμ(f)=∫+∞−∞sμ(t)⋅e−j⋅2π⋅f⋅tdt
ergibt sich das Spektrum S(f) allgemein zu:
- S(f)=(s0⋅a0⋅T⋅si(πfT)⋅e−j⋅2π⋅T/2⋅f)∗∫+∞−∞e0⋅e−j⋅2π⋅f⋅tdt+...
- ...+(s0⋅aμ⋅T⋅si(πfT)⋅e−j⋅2π⋅T/2⋅f)∗∫+∞−∞ej⋅2π⋅μ⋅f0⋅t⋅e−j⋅2π⋅f⋅tdt+...
- ...+(s0⋅aN−1⋅T⋅si(πfT)⋅e−j⋅2π⋅T/2⋅f)∗∫+∞−∞ej⋅2π⋅(N−1)⋅f0⋅t⋅e−j⋅2π⋅f⋅tdt.
Mit Distributionen lässt sich diese Gleichung wie folgt ausdrücken:
- S(f)=(s0⋅a0⋅T⋅si(πfT)⋅e−j⋅π⋅T⋅f)∗δ(f)+...
- ...+(s0⋅aμ⋅T⋅si(πfT)⋅e−j⋅π⋅T⋅f)∗δ(f−μ⋅f0)+...
- ...+(s0⋅aN−1⋅T⋅si(πfT)⋅e−j⋅π⋅T⋅f)∗δ(f−(N−1)⋅f0).
- ⇒S(f)=s0⋅a0⋅T⋅si(π⋅T⋅f)⋅e−j⋅π⋅T⋅f+...
- ...+s0⋅aμ⋅T⋅si(π⋅T⋅(f−μ⋅f0))⋅e−j⋅π⋅T⋅(f−μ⋅f0)+...
- ...+s0⋅aN−1⋅T⋅si(π⋅T⋅[f−(N−1)⋅f0)]⋅e−j⋅π⋅T⋅[f−(N−1)⋅f0].
Setzt man nun f=μ·f0, so erhält man:
- S(μ⋅f0)=0+...+s0⋅aμ⋅T⋅si(0)⋅e0+...+0=s0⋅aμ⋅T=Sμ(μ⋅f0).
Das Spektrum bei f=μ·f0 setzt sich also nur aus Anteilen des μ–ten Trägers zusammen, wobei alle anderen Träger identisch Null werden. Die Orthogonalität ist gewährleistet. q.e.d.
Fazit: Die Orthogonalität des OFDM–Signals s(t) ist sowohl für die Laufvariable k (Zeit) als auch für die Laufvariable μ (Trägerfrequenzen) gegeben.
Aufgaben zum Kapitel
Aufgabe 5.6Z: Einträger–und Mehrträgersystem