Binomial- und Poissonverteilung (Applet)
Inhaltsverzeichnis
Programmbeschreibung
Dieses Applet ermöglicht die Berechnung und graphische Darstellung von Wahrscheinlichkeiten von
- Binomialverteilungen:
\hspace{1.5cm}p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p^\mu\cdot ({\rm 1}-p)^{I-\mu},
\hspace{0.7cm}wobei I die Anzahl der binären und statisch voneinander unabhängigen Zufallsgrößen b_i und
\hspace{0.7cm}p={\rm Pr}(b_i=1) die Erfolgswahrscheinlichkeit darstellt, und
- Poissonverteilungen:
\hspace{1.5cm}p_\mu = {\rm Pr}(z=\mu)=\frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda},
\hspace{0.7cm}wobei die Rate\lambda aus \lambda=I\cdot p berechnet werden kann.
Da gleichzeitig bis zu zwei Verteilungsfunktionen eingestellt werden können, können Binomial- und Poissonverteilungen einfach miteinander verglichen werden.
Theoretischer Hintergrund
Binomialverteilung
Die Binomialverteilung gehört zu den wichtigsten diskreten Wahrscheinlichkeitsverteilungen und beschreibt die Erfolgswahrscheinlichkeiten von I binären und statistisch voneinander unabhängigen Zufallsgrößen. Zur Berechnung einer solchen Verteilung wird die Formel
p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p^\mu\cdot ({\rm 1}-p)^{I-\mu}
verwendet, wobei
- I\hspace{0.3cm} die Menge aller Zufallsgrößen b_i,
- z = \mu = 0, ..., I\hspace{0.3cm} die Menge aller "erfolgreichen" Zufallsgrößen b_i = 1,
- p = {\rm Pr}(b_i=1)\hspace{0.3cm} die Erfolgswahrscheinlichkeit und
- {I \choose \mu}\hspace{0.3cm} ("I \text{ über } \mu") die Anzahl der möglichen Kombinationen bezeichnet.
Versuchsdurchführung
In der folgenden Beschreibung bedeutet
- Blau: Verteilungsfunktion 1 (im Applet blau markiert)
- Rot: Verteilungsfunktion 2 (im Applet rot markiert)
(1) Setzen Sie Blau: Binomialverteilung (I=5, p=0.4) und Rot: Binomialverteilung (I=10, p=0.2).
- Wie lauten die Wahrscheinlichkeiten {rm Pr}(z=0) und {\rm Pr}(z=1)?
\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Blau: }{\rm Pr}(z=0)=0.6^5=7.78\%, \hspace{0.3cm}{\rm Pr}(z=1)=0.4 \cdot 0.6^4=25.92\%
\hspace{1.85cm}\text{Rot: }{\rm Pr}(z=0)=0.8^10=10.74\%, \hspace{0.3cm}{\rm Pr}(z=1)=0.2 \cdot 0.8^9=26.84\%
(2) Es gelten die Einstellungen von (1). Wie groß sind die Wahrscheinlichkeiten {\rm Pr}(3 \le z \le 5)?
\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Es gilt }{\rm Pr}(3 \le z \le 5) = {\rm Pr}(z=3) + {\rm Pr}(z=4) + {\rm Pr}(z=5)\text{, oder}
\hspace{3.25cm}{\rm Pr}(3 \le z \le 5) = {\rm Pr}(z \le 5) - {\rm Pr}(z \le 2)
\hspace{1.85cm}\text{Blau: }{\rm Pr}(3 \le z \le 5) = 1 - 0.6826 = 0.3174
\hspace{1.85cm}\text{Rot: }{\rm Pr}(3 \le z \le 5) = 0.9936 - 0.6778 = 0.3158
(3) Es gelten die Einstellungen von (1). Wie unterscheiden sich Mittelwert m_1 und Streuung \sigma?
\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Mittelwert: }m_1 = I \cdot p\hspace{0.3cm} \Rightarrow\hspace{0.3cm} m_1 = 1 \text{ für beide Verteilungen}.
\hspace{1.85cm}\text{Streuung: }\sigma = m_1^2 - m_2 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma_{\rm Blau} = 1.1 \le \sigma_{\rm Rot} = 1.26
(3) Setzen Sie Blau: Binomialverteilung (I=15, p=0.3) und Rot: Poissonverteilung (\lambda=4.5).
- Welche Unterschiede ergeben sich in Mittelwert m_1 und Streuung \sigma zwischen beiden Verteilungen?
\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Poisson: }\hspace{0.2cm}m_1 = \lambda,\hspace{0.2cm} \sigma = {\sqrt \lambda}
\hspace{1.85cm} \text{Blau: }\hspace{0.2cm} m_1 = 4.5, \hspace{0.3cm}\sigma = 1.77
\hspace{1.85cm} \text{Rot: }\hspace{0.2cm} m_1 = 4.5, \hspace{0.3cm}\sigma = 2.12
(5) Es gelten die Einstellungen von (4). Wie groß sind die Wahrscheinlichkeiten {\rm Pr}(z \gt 10) und {\rm Pr}(z \gt 15)
\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Binomial: }\hspace{0.2cm} {\rm Pr}(z \gt 10) = 1 - {\rm Pr}(z \le 10) = 1 - 0.9993 = 0.0007;\hspace{0.3cm} {\rm Pr}(z \gt 15) = 0.
\hspace{1.85cm}\text{Poisson: }\hspace{0.2cm} {\rm Pr}(z \gt 10) = 1 - 0.9933 = 0.0067;\hspace{0.3cm}{\rm Pr}(z \gt 15) \gt 0\hspace{0.5cm}\text{Näherung: }\hspace{0.2cm}{\rm Pr}(z \gt 15) \le {\rm Pr}(z = 16) = \lambda^{16}/16!