Binomial- und Poissonverteilung (Applet)
Inhaltsverzeichnis
Programmbeschreibung
Dieses Applet ermöglicht die Berechnung und graphische Darstellung von Wahrscheinlichkeiten von
- Binomialverteilungen:
\hspace{1.5cm}p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p^\mu\cdot ({\rm 1}-p)^{I-\mu},
\hspace{0.7cm}wobei I die Anzahl der binären und statisch voneinander unabhängigen Zufallsgrößen b_i und
\hspace{0.7cm}p={\rm Pr}(b_i=1) die Erfolgswahrscheinlichkeit darstellt, und
- Poissonverteilungen:
\hspace{1.5cm}p_\mu = {\rm Pr}(z=\mu)=\frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda},
\hspace{0.7cm}wobei die Rate\lambda aus \lambda=I\cdot p berechnet werden kann.
Da gleichzeitig bis zu zwei Verteilungsfunktionen eingestellt werden können, können Binomial- und Poissonverteilungen einfach miteinander verglichen werden.
Theoretischer Hintergrund
Poissonverteilung als Grenzfall der Binomialverteilung
Versuchsdurchführung
In der folgenden Beschreibung bedeutet
- Blau: Verteilungsfunktion 1 (im Applet blau markiert)
- Rot: Verteilungsfunktion 2 (im Applet rot markiert)
(1) Setzen Sie Blau: Binomialverteilung (I=5, p=0.4) und Rot: Binomialverteilung (I=10, p=0.2).
- Wie lauten die Wahrscheinlichkeiten {rm Pr}(z=0) und {\rm Pr}(z=1)?
\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Blau: }{\rm Pr}(z=0)=0.6^5=7.78\%, \hspace{0.3cm}{\rm Pr}(z=1)=0.4 \cdot 0.6^4=25.92\%
\hspace{2.5cm}\text{Rot: }{\rm Pr}(z=0)=0.8^10=10.74\%, \hspace{0.3cm}{\rm Pr}(z=1)=0.2 \cdot 0.8^9=26.84\%
(2) Es gelten die Einstellungen von (1). Wie groß sind die Wahrscheinlichkeiten {\rm Pr}(3 \le z \le 5)?
\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Es gilt }{\rm Pr}(3 \le z \le 5) = {\rm Pr}(z=3) + {\rm Pr}(z=4) + {\rm Pr}(z=5), oder
\hspace{1.85cm}{\rm Pr}(3 \le z \le 5) = {\rm Pr}(z \le 5) - {\rm Pr}(z \le 2)