Linear Distortions of Periodic Signals

Aus LNTwww
Wechseln zu:Navigation, Suche

Open Applet in new Tab

Applet description


This applet illustrates the effects of linear distortions (attenuation distortions and phase distortions) with

Meanings of the signals used
  • the input signal x(t)   ⇒   power Px:
x(t)=x1(t)+x2(t)=A1cos(2πf1tφ1)+A2cos(2πf2tφ2),
  • the output signal y(t)   ⇒   power Py:
y(t)=α1x1(tτ1)+α2x2(tτ2),
  • the matching output signal z(t)   ⇒   power Pz:
z(t)=kMy(tτM)+α2x2(tτ2),
  • the difference signal   ε(t)=z(t)x(t)   ⇒   power Pε.


The next block in the above model is Matching: The output signal y(t) is adjusted in amplitude and phase with uniform quantities kM and τM for all frequencies which means that this is not a frequency-dependent distortion. Using the signal z(t), a differentiation can be made between:

  • attenuation distortion and frequency–independant attenuation, as well as
  • phase distortion and pure frequency–independant delay.


The Distortion Power PD is used to measure the strength of the linear distortion and is defined as:

PD=minkM, τMPε.


Theoretical background


Distortions refer to generally unwanted alterations of a message signal through a transmission system. Together with the strong stochastic effects (noise, crosstalk, etc.), they are a crucial limitation for the quality and rate of transmission.

Just as the intensity of noise can be assessed through

  • the Noise Power PN and
  • the Signal–to–Noise Ratio (SNR) ρN,


distortions can be quantified through

  • the Distortion Power PD and
  • the Signal–to–Distortion Ratio (SDR)
ρD=Signal PowerDistortion Power=PxPD.


Linear and nonlinear distortions


A distinction is made between linear and nonlinear distortions:

  • Nonlinear distortions occur, if at all times t the nonlinear correlation y=g(x)const.x exists between the signal values x=x(t) at the input and y=y(t) at the output, whereby y=g(x) is defined as the system's nonlinear characteristic. By creating a cosine signal at the input with frequency f0 the output signal value includes f0 as well as multiple harmonic waves. We conclude that new frequencies arise through nonlinear distortion.
For clarification of nonlinear distortions
Description of a linear system
  • Linear distortions occur, if the transmission channel is characterized by a frequency response H(f)const. Various frequencies are attenuated and delayed differently. Characteristic of this is that although frequencies can disappear (for example, through a Low–pass or a High–pass), no new frequencies can arise.


In this applet only linear distortions are considered.


Description forms for the frequency response


The generally complex valued frequency response can be represented as follows:

H(f)=|H(f)|ejb(f)=ea(f)ejb(f).

This results in the following description variables:

  • The absolute value |H(f)| is called amplitude response and in logarithmic form attenuation function:
a(f)=ln|H(f)|inNeper(Np)=20lg|H(f)|inDecibel(dB).
  • The phase function b(f) indicates the negative frequency–dependent angle of H(f) in the complex plane based on the real axis:
b(f)=arcH(f)inRadian(rad).


Low–pass of order N


Attenuation function a(f) and phase function b(f) of a low–Pass of order N

The frequency response of a realizable low pass of order N is:

H(f)=[11+jf/f0]N.

For example the RC low pass is a first order low–Pass. Consequently we can obtain

  • the attenuation function:
a(f)=N/2ln[1+(f/f0)2],
  • the phase function:
b(f)=Narctan(f/f0),
  • the attenuation factor for the frequency f=fi:
αi=|H(f=fi)|=[1+(fi/f0)2]N/2
x(t)=Aicos(2πfit)y(t)=αiAicos(2πfit),
  • the phase delay for the frequency f=fi:
τi=b(fi)2πfi=Narctan(fi/f0)2πfi
x(t)=Aicos(2πfit)y(t)=Aicos(2πfi(tτi)).


High–pass of order N


Attenuation function a(f) and phase function b(f) of a high–pass of order N

The frequency response of a realizable high–pass of order N is:

H(f)=[jf/f01+jf/f0]N.

For example the LC high pass is a first grade high pass. Consequently we can obtain

  • the attenuation function:
a(f)=N/2ln[1+(f0/f)2],
  • the phase function:
b(f)=Narctan(f0/f),
  • the attenuation factor for the frequency f=fi:
αi=|H(f=fi)|=[1+(f0/fi)2]N/2
x(t)=Aicos(2πfit)y(t)=αiAicos(2πfit),
  • the phase delay for the frequency f=fi:
τi=b(fi)2πfi=Narctan(f0/fi)2πfi
x(t)=Aicos(2πfit)y(t)=Aicos(2πfi(tτi)).


Phase function b(f) of high–pass and low–pass

Example:  This graphic shows the phase function b(f) with the cut–off frequency f0=1 kHz and order N=1

  • of a Low–pass (green curve),
  • of a High–pass (violet curve).


The input signal is sinusoidal with frequency fS=1.25 kHz whereby this signal is only turned on at t=0:

x(t)={0sin(2πfSt)(t<0),(t>0).

The left graphic shows the signal x(t). The dashed line marks the first zero at t=T0=0.8 ms. The other two graphics show the output signals yLP(t) und yHP(t) of low–pass and high–pass, whereby the change in amplitude was balanced in both cases.

Input signal x(t) (enframed in blue) as well as output signals yLP(t) ⇒   green and yHP(t) ⇒   violet
  • The first zero of the signal yLP(t) after the low–pass is delayed by τLP=0.9/(2π)T00.115 ms compared to the first zero of x(t)   ⇒   marked with green arrow, whereby bLP(f/fS=0.9 rad) was considered.
  • In contrast, the phase delay of the high–pass is negative: τHP=0.67/(2π)T00.085 ms and therefore the first zero of yHP(t) occurs before the dashed line.
  • Following this transient response, in both cases the zero crossings again come in the raster of the period duration T0=0.8 ms.


Annotation: The shown signals were created using the interactive applet Causal systems – Laplace transform.

Attenuation distortions and phase distortions


Requirements for a non–distorting channel

The adjacent figure shows

  • the even attenuation function a(f)   ⇒   a(f)=a(f), and
  • the uneven function curve b(f)   ⇒   b(f)=b(f)


of a non–distorting channel. One notices:

  • In a distortion–free system the attenuation function a(f) must be constant betweenfU and fO around the carrier frequency fT, where the input signal exist   ⇒   x(t)0.
  • From the specified constant attenuation value 6 dB follows for the amplitude response |H(f)|=0.5   ⇒   the signal values of all frequencies are thus halved by the system   ⇒   no attenuation distortions.
  • In addition, in such a system, the phase function b(f) between fU and fO must increase linearly with the frequency. As a result, all frequency components are delayed by the same phase delay τ   ⇒   no phase delay.
  • The delay τ is fixed by the slope of b(f). The phase function b(f)0 would result in a delay–less system   ⇒   τ=0.


The following summary considers that in this applet the input signal is always the sum of two harmonic oscillations,

x(t)=x1(t)+x2(t)=A1cos(2πf1tφ1)+A2cos(2πf2tφ2),

and therefor the channel influence is fully described by the attenuation factors α1 and α2 as well as the phase delays τ1 and τ2:

y(t)=α1x1(tτ1)+α2x2(tτ2).

Summary: 

  • A signal y(t) is only distortion–free compared to x(t) if α1=α2=α   and   τ1=τ2=τ   ⇒   y(t)=αx(tτ).
  • Attenuation distortions occur when α1α2. If α1α2 and τ1=τ2, then there are exclusively attenuation distortions.
  • Phase distortions occur when τ1τ2. If τ1τ2 and α1=α2, then there are exclusively phase distortions.



Exercises


BlaBla

(1)   We set the parameters for the transmitter signal x(t) to A1=0.8 V, A2=0.6 V, f1=0.5 kHz, f2=1.5 kHz, φ1=90, φ2=30.

Calculate the signal's cycle duration T0 and power Px. Can you read the value for Px off the applet?


T0=[ greatest common divisor (0.5 kHz, 1.5 kHz)]1=2.0 ms_;

Px=A21/2+A22/2=0.5 V2_=Pε, if kM=0_  z(t)0.

(2)  Vary φ2 between ±180 while assuming the other parameters from (1). How does the value of T0 and Px change?


No changes:T0=2.0 ms;Px=0.5 V2_.

(3)   Vary f2 between 0f210 kHz while assuming the other parameters from (1). How does the value of Px change?


No changes if f20 oder f2f1:Px=0.5 V2_.T0 changes if f2is not a multiple of f1.

If f2=0:Px=A21/2+A22=0.68 V2_.

Iff2=f1:Px=[A1cos(φ1)+A2cos(φ2)]2/2+[A1sin(φ1)+A2sin(φ2)]2/2. Mit φ1=90, φ2=30:Px=0.74 V2_.

(4)   Going by the previous output signal x(t) we set following parameters to: α1=α2=0.5, τ1=τ2=0.5 ms, kM=1 and τM=0 .

Are there linear distortions? Calculate the reception power Py and the power Pε of the differential signal ε(t)=z(t)x(t)


y(t)=0.5x(t1 ms)_ is only attenuated and delayed, but not distorted.

Reception power:Py=(A1/2)2/2+(A2/2)2/2=0.125 V2_Pε is significantly greater:Pε=0.625 V2_.

(5)   With otherwise the same settings as (4), vary the matching parameters kM and τM. How big is the distortion power PD?


PDis equal to Pε when using the ideal matching parameters:kM=2 und τM=T00.5 ms=1.5 ms

z(t)=x(t)ε(t)=0PD=Pε=0_Neither attenuation nor phase distortion.

(6)   The channel parameters are now set to: α1=0.5,α2=0.2_, τ1=τ2=0.5 ms. Calculate the distortion power PD and the SDR ρD?


PD=Pε when using the best matching parameters:kM=2.24_ und τM=1.5 ms_:PD=0.059 V2_.

Attenuation distortions only.Signal-to-Distortion-Ratio ρD=Px/Pε8.5_.

(7)   The channel parameters are now set to: α1=α2=0.5, τ1=2 ms_, τ2=0.5 ms. Calculate the distortion power PD and the SDR ρD?


PD=Pεwhen using the best matching parameters:kM=1.84_ and τM=0.15 ms_:PD=0.071 V2_.

Phase distortions only.Signal-to-Distortion-Ratio ρD=Px/Pε7_.

(8)   The channel parameters are now set to: α1=0.5_,α2=0.2_, τ1=0.5 ms_, τ2=0.3 ms_. Are there attenuation distortions? Are there phase distortions? How can y(t) be approximated? How can y(t) be approximated? Annotation: cos(3x)=4cos(x)33cos(x).


Both attenuation and phase distortions, because α1α2 and τ1τ2.

Es gilt y(t)=y1(t)+y2(t)  y1(t)=A1α1sin[2πf1 (t0.5 ms)]=0.4 Vcos(2πf1t)  y2(t)=α2x2(tτ2) mit x2(t)=A2cos[2πf2 (t30)]A2cos[2πf2 (t1/36 ms)]  y2(t)=0.12 Vcos[2πf2 (t0.328 ms)]0.12 Vcos[2πf2t].  y(t)=y1(t)+y2(t)0.4 V[cos(2πf1t)+1/3cos(2π3f1t)=0.533 Vcos3(2πf1t).

(9)   Assuming the parameters from (8). Calculate the distortion power PD and the SDR ρD?


Best possible adaptation:kM=1.96_τM=1.65 ms_:PD=0.156 V2_,ρD=0.500/0.1563.2_.

(10)   Nun gelte A2=0 und A1=1 V, f1=1 kHz, φ1=0. Der Kanal sei ein Tiefpass erster Ordnung (f0=1 kHz)_.
Gibt es Dämpfungsverzerrungen? Gibt es Phasenverzerrungen? Wie groß sind die Kanalkoeffizienten α1 und τ1?


Bei nur einer Frequenz gibt es weder Dämpfungs– noch Phasenverzerrungen. Dämpfungsfaktor für f1=f0 und N=1α1=|H(f=f1)|=[1+(f1/f0)2]N/2=21/2=1/2=0.707_, Phasenfaktor für f1=f0 und N=1τ1=Narctan(f1/f0)/(2πfi)=arctan(1)/(2πfi)=1/(8f1)=0.125 ms_.







Zur Handhabung des Applets

Periodendauer fertig version1.png

    (A)     Parametereingabe per Slider

    (B)     Bereich der graphischen Darstellung

    (C)     Variationsmöglichkeit für die graphische Darstellung

    (D)     Abspeichern und Zurückholen von Parametersätzen

    (E)     Numerikausgabe des Hauptergebnisses T0; graphische Verdeutlichung durch rote Linie

    (F)     Ausgabe von xmax und der Signalwerte x(t)=x(t+T0)=x(t+2T0)

    (G)     Darstellung der Signalwerte x(t)=x(t+T0)=x(t+2T0) durch grüne Punkte

    (H)     Einstellung der Zeit t für die Signalwerte x(t)=x(t+T0)=x(t+2T0)

Details zum obigen Punkt (C)

    (*)   Zoom–Funktionen „+” (Vergrößern), „” (Verkleinern) und o (Zurücksetzen)

    (*)   Verschieben mit „” (Ausschnitt nach links, Ordinate nach rechts), „” „” und „

Andere Möglichkeiten:

    (*)   Gedrückte Shifttaste und Scrollen: Zoomen im Koordinatensystem,

    (*)   Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.


Über die Autoren

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

  • Die erste Version wurde 2005 von Bettina Hirner im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder ).
  • 2018 wurde dieses Programm von Jimmy He im Rahmen seiner Bachelorarbeit (Betreuer: Tasnád Kernetzky) auf „HTML5” umgesetzt und neu gestaltet.

Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Open Applet in new Tab