Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Frequenzgang und Impulsantwort

Aus LNTwww
Wechseln zu:Navigation, Suche

Aufruf des Applets in neuem Fenster

Applet in neuem Tab öffnen

Programmbeschreibung


noch überarbeiten

Dargestellt werden impulsförmige symmetrische Zeitsignale   ⇒   „Impulse” x(t) und die dazugehörigen Spektralfunktionen X(f), nämlich

  • Gaußimpuls (englisch: Gaussian pulse),
  • Rechteckimpuls (englisch: Rectangular pulse),
  • Dreieckimpuls (englisch: Triangular pulse),
  • Trapezimpuls (englisch: Trapezoidal pulse),
  • Cosinus–Rolloff–Impuls (englisch: Cosine-rolloff pulse).


Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung. Die englische Beschreibung finden Sie unter Englische Version: Frequency response & Pulse response.


Weiter ist zu beachten:

  • Die Funktionen x(t) bzw. X(f) werden für bis zu zwei Parametersätzen in jeweils einem Diagramm dargestellt.
  • Die roten Kurven und Zahlenangaben gelten für den linken Parametersatz, die blauen für den rechten Parametersatz.
  • Die Abszissen t (Zeit) und f (Frequenz) sowie die Ordinaten x(t) (Signalwerte) bzw. X(f) (Spektralwerte) sind jeweils normiert.


Beispiel:  Stellt man einen Rechteckimpuls mit Amplitude A1=1 und äquivalenter Impulsdauer Δt1=1 ein, so ist x1(t) im Bereich 0.5<t<+0.5 gleich 1 und außerhalb dieses Bereichs gleich 0. Die Spektralfunktion X1(f) verläuft si–förmig mit X1(f=0)=1 und der ersten Nullstelle bei f=1.

Soll mit dieser Einstellung ein Rechteckimpuls mit A=K=3 V und Δt=T=2 ms nachgebildet werden, dann sind alle Signalwerte mit K=3 V und alle Spektralwerte mit KT=0.006 V/Hz zu multiplizieren. Der maximale Spektralwert ist dann X(f=0)=0.006 V/Hz und die erste Nullstelle liegt bei f=1/T=0.5 kHz.


Theoretischer Hintergrund


Frequenzgang H(f) und Impulsantwort h(t)

  • Der Frequenzgang (oder auch die Übertragungsfunktion eines linearen zeitinvarianten Übertragungssystems H(f) gibt das Verhältnis zwischen Zusammenhang zwischen Zeitfunktion x(t) und dem dem Eingangsspektrum X(f) an:
H(f)=Y(f)X(f).
  • Ist das Übertragungsverhalten bei tiefen Frequenzen besser als bei höheren, so spricht man von einem Tiefpass (englisch: Low-pass Filter).
  • Die Eigenschaften von H(f) werden im Zeitbereich durch die Impulsantwort h(t) ausgedrückt. Entsprechend dem zweiten Fourierintegral gilt:
h(t)=IFT[H(f)]=+H(f)e+j2πftdfIFT:Inverse Fouriertransformation.
H(f)=FT[h(t)]=+h(t)ej2πftdtFT: Fouriertransformation.
  • In allen Beispielen verwenden wir reelle und gerade Funktionen. Somit gilt:
h(t)=+H(f)cos(2πft)df     H(f)=+h(t)cos(2πft)dt.
  • Bei einem Vierpol   ⇒   X(f) und Y(f) haben gleiche Einheiten ist Y(f) dimensionslos. Die Einheit der Impulsantwort ist 1/s. Es gilt zwar 1/s=1 Hz, aber die Einheit „Hertz” ist in diesem Zusammenhang unüblich.
  • Der Zusammenhang zwischen diesem Modul „Frequenzgang & Impulsantwort” und dem ähnlich aufgebauten Applet Impulse und Spektren basiert auf dem Vertauschungssatz.
  • Alle Zeiten sind auf eine Normierungszeit T normiert und alle Frequenzen auf 1/T die Impulsantwortwerte h(t) müssen noch durch die Normierungszeit T dividiert werden.


Beispiel:  Stellt man einen Rechteck–Tiefpass mit Höhe K1=1 und äquivalenter Bandbreite Δf1=1 ein, so ist der Frequenzgang H1(f) im Bereich 1<f<1 gleich 1.5 und außerhalb dieses Bereichs gleich 0. Die Impulsantwort h1(t) verläuft si–förmig mit h1(t=0)=1 und der ersten Nullstelle bei t=1.

Mit dieser Einstellung soll nun ein Rechteck–Tiefpass mit Δf=2 kHz nachgebildet werden, wobei wir die Normierungszeit T=1 ms. Dann liegt die erste Nullstelle bei t=0.5 ms und das Impulsantwortmaximum ist dann h(t=0)=2103 1/s.

Bitte überprüfen


Gauß–Tiefpass     Gaussian Low–pass

  • Der Gauß–Tiefpass mit der Höhe K und der (äquivalenten) Bandbreite Δf lautet:
H(f)=Keπ(f/Δf)2.
  • Die äquivalente Bandbreite Δf ergibt sich aus dem flächengleichen Rechteck.
  • Der Wert bei f=Δf/2 ist um den Faktor 0.456 kleiner als der Wert bei f=0.
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
h(t)=KΔfeπ(tΔf)2.
  • Je kleiner Δf ist, um so breiter und niedriger ist die Impulsantwort   ⇒   Reziprozitätsgesetz von Bandbreite und Impulsdauer.
  • Sowohl H(f) als auch h(t) sind zu keinem f- bzw. t-Wert exakt gleich Null.
  • Für praktische Anwendungen kann der Gaußimpuls jedoch in Zeit und Frequenz als begrenzt angenommen werden. Zum Beispiel ist h(t) bereits bei t=1.5Δt auf weniger als 0.1% des Maximums abgefallen.

Idealer (rechteckförmiger) Tiefpass     Rectangular Low–pass

  • Der Rechteck–Tiefpass mit der Höhe K und der (äquivalenten) Bandbreite Δf lautet:
H(f)={KK/20f¨urf¨urf¨ur|f|<Δf/2,|f|=Δf/2,|f|>Δf/2.
  • Der ±Δf/2–Wert liegt mittig zwischen links- und rechtsseitigem Grenzwert.
  • Für die Impulsantwort h(t) erhält man entsprechend den Gesetzmäßigkeiten der Fourierrücktransformation (2. Fourierintegral):
h(t)=KΔfsi(πΔft)mit si(x)=sin(x)/x.
  • Der h(t)–Wert bei t=0 ist gleich der Rechteckfläche des Frequenzgangs.
  • Die Impulsantwort besitzt Nullstellen in äquidistanten Abständen 1/Δf.
  • Das Integral über die Impulsantwort h(t) ist gleich dem Frequenzgang H(f) bei der Frequenz f=0, also gleich K.

Dreieck–Tiefpass Triangular Low–pass

  • Der Dreieck–Tiefpass mit der Höhe K und der (äquivalenten) Bandbreite Δf lautet:
H(f)={K(1|f|Δf)0f¨urf¨ur|f|<Δf,|f|Δf.
  • Die absolute physikalische Bandbreite B   ⇒   nur positive Frequenzen ist ebenfalls gleich Δf, also so groß wie beim Rechteck–Tiefpass.
  • Für die Impulsantwort h(t) erhält man gemäß der Fouriertransformation:
h(t)=KΔfsi2(πΔft)mit si(x)=sin(x)/x.
  • H(f) kann man als Faltung zweier Rechteckfunktionen, jeweils mit Breite Δf darstellen.
  • Daraus folgt: h(t) beinhaltet anstelle der si-Funktion die si2-Funktion.
  • h(t) weist somit ebenfalls Nullstellen im äquidistanten Abständen 1/Δf auf.
  • Der asymptotische Abfall von X(f) erfolgt hier mit 1/f2, während zum Vergleich der Rechteckimpuls mit 1/f abfällt.


Trapez–Tiefpass     Trapezoidal Low–pass

ab hier noch anpassen Die Zeitfunktion des Trapezimpulses mit der Höhe K und den Zeitparametern t1 und t2 lautet:

x(t)={KKt2|t|t2t10f¨urf¨urf¨ur|t|t1,t1|t|t2,|t|t2.
  • Für die äquivalente Impulsdauer (flächengleiches Rechteck) gilt: Δt=t1+t2.
  • Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:
r=t2t1t2+t1.
  • Der Sonderfall r=0 entspricht dem Rechteckimpuls der Sonderfall r=1 dem Dreieckimpuls.
  • Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
X(f)=KΔtsi(πΔtf)si(πrΔtf)mit si(x)=sin(x)x.
  • Der asymptotische Abfall von X(f) liegt zwischen 1/f (für Rechteck, r=0) und 1/f2 (für Dreieck, r=1).


Cosinus-Rolloff-Tiefpass     Cosine-rolloff Low–pass

Die Zeitfunktion des Cosinus-Rolloff-Impulses mit der Höhe K und den Zeitparametern t1 und t2 lautet:

x(t)={KKcos2(|t|t1t2t1π2)0f¨urf¨urf¨ur|t|t1,t1|t|t2,|t|t2.
  • Für die äquivalente Impulsdauer (flächengleiches Rechteck) gilt: Δt=t1+t2.
  • Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:
r=t2t1t2+t1.
  • Der Sonderfall r=0 entspricht dem Rechteckimpuls der Sonderfall r=1 dem Cosinus-Quadrat-Impuls .
  • Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
X(f)=KΔtcos(πrΔtf)1(2rΔtf)2si(πΔtf).
  • Je größer der Rolloff-Faktor r ist, desto schneller nimmt X(f) asymptotisch mit f ab.


Cosinus-Quadrat-Tiefpass

  • Dies ist ein Sonderfall des Cosinus-Rolloff-Impulses und ergibt sich für r=1t1=0,t2=Δt:
x(t)={Kcos2(|t|π2Δt)0f¨urf¨ur|t|<Δt,|t|Δt.
  • Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
X(f)=KΔfπ4[si(π(Δtf+0.5))+si(π(Δtf0.5))]si(πΔtf).
  • Wegen der letzten si-Funktion ist X(f)=0 für alle Vielfachen von F=1/Δt. Die äquidistanten Nulldurchgänge des Cos-Rolloff-Impulses bleiben erhalten.
  • Aufgrund des Klammerausdrucks weist X(f) nun weitere Nulldurchgänge bei f=±1.5F, ±2.5F, ±3.5F, ... auf.
  • Für die Frequenz f=±F/2 erhält man die Spektralwerte KΔt/2.
  • Der asymptotische Abfall von X(f) verläuft in diesem Sonderfall mit 1/f3.

Vorschlag für die Versuchsdurchführung


„Rot” bezieht sich stets auf den ersten Parametersatz   ⇒   x1(t) X1(f) und „Blau” den zweiten   ⇒   x2(t) X2(f).

(1)   Vergleichen Sie den roten Gauß–Tiefpass (K1=1,Δf1=1) mit dem blauen Rechteck–Tiefpass (K1=1,Δf1=1)   ⇒   Voreinstellung. und beantworten Sie folgende Fragen:
(a)   Welche Signale y(t) treten am Ausgang der Tiefpässe auf, wenn am Eingang das Signal x(t)=2cos(2πf0tφ0) mit f0=0.5 anliegt? (b)   Welche Unterschiede ergeben sich f0=0.5±fε mit fε0, fε0 bei beiden Tiefpässen?


(a) In beiden Fällen gilt y(t)=Acos(2πf0tφ0) mit A=2H(f=f0)  A1=0.912,A2=1.000. Die Phase φ0 bleibt erhalten.

(b) Beim Gauß–Tiefpass gilt weiterhin A1=0.912. Beim Rechteck–Tiefpass ist A2=0 für f0=0.5000...001 und A2=2 für f0=0.4999...999.


(2)   Lassen Sie die Einstellungen unverändert. Welcher Tiefpass kann das erste Nyquistkriterium oder das zweite Nyquistkriterium erfüllen, wenn H(f) den Gesamtfrequenzgang von Sender, Kanal und Empfangsfilter bezeichnet.


  • Um das erste Nyquistkriterium zu erfüllen, muss die Impulsantwort h(t) äquidistante Nulldurchgänge bei Vielfachen der (normierten) Zeit t=1,2, ... aufweisen. Die Impulsantwort h(t)=si(πf/Δf) des Rechteck–Tiefpasses erfüllt dieses Kriterium mit Δf=1. Dagegen ist beim Gauß–Tiefpass das erste Nyquistkriterium nie erfüllt und es kommt immer zu Impulsinterferenzen.
  • Das zweite Nyquistkriterium erfüllt der Rechteck–Tiefpass dagegen nicht.


(3)   Vergleichen Sie den roten Trapez–Tiefpass (K1=1,Δf1=1,r1=0.5) mit dem blauen Rechteck–Tiefpass (K1=1,Δf1=1) und variieren Sie anschließend r1 zwischen 0 und 1.

  • Bei der Einstellung r1=0.5 sind die Unterschwinger in der Impulsantwort h(t) beim Trapez–Tiefpass aufgrund des flacheren Flankenabfalls geringer als beim Rechteck–Tiefpass.
  • Je kleiner der Roll–off–Faktor r1 wird, desto größer werden die Unterschwinger. Bei r1=0 ist der Trapez–Tiefpass identisch mit dem Rechteck–Tiefpass   ⇒   h(t)=si(πt).
  • Erhöht man dagegen den Roll–off–Faktor r1, so größer werden die Unterschwinger kleiner. Bei r1=1 ist der Trapez–Tiefpass identisch mit dem Dreieck–Tiefpass   ⇒   h(t)=si2(πt).


(4)   Vergleichen Sie den roten Trapez–Tiefpass (K1=1,Δf1=1,r1=0.5) mit dem blauen Cosinus-Rolloff-Tiefpass (K2=1,Δf2=1.0,r1=0.5) und und variieren Sie r2 zwischen 0 und 1. Interpretieren Sie die Spektalfunktion X2(f) für r2=0.7.

Fragen und Antworten noch überarbeiten

  • Der Vergleich von Trapezimpuls x1(t) und Cosinus-Rolloff-Impuls x2(t) bei gleichem Rolloff-Faktor r=0.5 zeigt, dass X2(f) für f>1 größere betragsmäßige Anteile besitzt als ist X1(f).
  • Bei gleichem Rolloff-Faktor r1=r2=0.5 verläuft der Flankenabfall des Cosinus-Rolloff-Impulses x2(t) um die Frequenz f=0.5 steiler als der Flankenabfall des Trapezimpulses x2(t). Mit r1=0.5 und r2=0.7 gilt x1(t)x2(t) und damit auch X1(f)X2(f).


(5)   Vergleichen Sie den roten Trapez–Tiefpass' (K1=1,Δf1=1,r1=1) mit dem blauen Cosinus-Rolloff-Impuls (K2=1,Δf2=1.0,r1=1). Interpretieren Sie die Funktionen x1(t) und X1(f).

Fragen und Antworten noch überarbeiten


  • Es handelt sich bei x1(t)=cos2(|t|π/2)  für |t|1 um den Cosinus-Quadrat-Impuls.
  • Wegen Δt=1 besitzt X1(f) Nulldurchgänge bei ±1, ±2, ...
  • Weitere Nulldurchgänge gibt es bei f=±1.5, ±2.5, ±3.5, ... , nicht jedoch bei ±0.5.
  • Für die Frequenz f=±0.5 erhält man die Spektralwerte 0.5.
  • Der asymptotische Abfall von X1(f) verläuft in diesem Sonderfall mit 1/f3.


Zur Handhabung des Programms

Frequenzgang version1.png

    (A)     Bereich der graphischen Darstellung für H(f)

    (B)     Bereich der graphischen Darstellung für h(t)

    (C)     Variationsmöglichkeit für die graphischen Darstellungen

    (D)     Parametereingabe per Slider
                      links (rot): „Low–pass 1”,         rechts (blau): „Low–pass 2”

    (E)     Parameter entsprechend der Voreinstellung   ⇒   „Reset”

    (F)     Einstellung von t und f für Numerikausgabe

    (G)     Numerikausgabe von H(f) und h(t)
                      links (rot): „Low–pass 1”,         rechts (blau): „Low–pass 2”


Details zum obigen Punkt (C)

    (*)   Zoom–Funktionen „+” (Vergrößern), „” (Verkleinern) und o (Zurücksetzen)

    (*)   Verschiebe–Funktionen „” (Bildausschnitt nach links, Ordinate nach rechts) sowie „” „” „


Andere Möglichkeiten:

  • Bei gedrückter Shifttaste und Scrollen kann im Koordinatensystem gezoomt werden.
  • Bei gedrückter Shifttaste und gedrückter linker Maustaste kann das Koordinatensystem verschoben werden.



Über die Autoren

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

  • Die erste Version wurde 2005 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder und Klaus Eichin).
  • 2017 wurde „Impulse & Spektren” von David Jobst im Rahmen seiner Ingenieurspraxis (Betreuer: Tasnád Kernetzky) auf „HTML5” umgesetzt und neu gestaltet.

Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Applet in neuem Tab öffnen