Aufgabe 3.5Z: Integration von Diracfunktionen
Aus LNTwww
(Weitergeleitet von 3.5Z Integration von Diracfunktionen)
Wie in der Aufgabe 3.5 soll das Spektrum Y(f) des Signals
- y(t)={A−A0f¨urf¨ursonst.−T≤t<0,0<t≤T,
ermittelt werden. Es gelte wieder A=1V und T=0.5ms.
Ausgegangen wird vom Zeitsignal x(t) gemäß der mittleren Skizze, das sich aus drei Diracimpulsen bei –T, 0 und +T mit den Impulsgewichte {AT}, -2{AT} und {AT} zusammensetzt.
Die Spektralfunktion {X(f)} kann durch Anwendung des Vertauschungssatzes direkt angegeben werden, wenn man berücksichtigt, dass die zu {U(f)} gehörige Zeitfunktion wie folgt lautet (siehe untere Skizze):
- u( t ) = - 2A + 2A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).
Hinweise:
- Die Aufgabe gehört zum Kapitel Gesetzmäßigkeiten der Fouriertransformation.
- Alle diese Gesetzmäßigkeiten werden im Lernvideo Gesetzmäßigkeiten der Fouriertransformation an Beispielen verdeutlicht.
- Zwischen {x(t)} und {y(t)} besteht folgender Zusammenhang:
- y( t ) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau )}\, {\rm d}\tau .
- Der Integrationssatz lautet in entsprechend angepasster Form:
- \frac{1}{T}\cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau )}\,\, {\rm d}\tau\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ X( f ) \cdot \left( {\frac{1}{{{\rm{j}}\cdot 2{\rm{\pi }\cdot }fT}} + \frac{1}{2T}\cdot {\rm \delta} ( f )} \right).
Fragebogen
Musterlösung
(1) Im Angabenteil zur Aufgabe finden Sie die Fourierkorrespondenz zwischen {u(t)} und {U(f)}.
- Da sowohl die Zeitfunktionen {u(t)} und {x(t)} als auch die dazugehörigen Spektren {U(f)} und {X(f)} gerade und reell sind, kann man {X(f)} durch Anwendung des Vertauschungssatzes leicht berechnen:
- X( f ) = - 2 \cdot A \cdot T + 2 \cdot A \cdot T \cdot \cos \left( {{\rm{2\pi }}fT} \right).
- Wegen der Beziehung \sin^{2}(\alpha) = (1 – \cos(\alpha))/2 kann hierfür auch geschrieben werden:
- X( f ) = - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} ).
- Bei der Frequenz f = 0 hat {x(t)} keine Spektralanteile ⇒ {X(f = 0)} \;\underline{= 0}.
- Für f = 1 \,\text{kHz} – also f \cdot T = 0.5 – gilt dagegen:
- X( f = 1\;{\rm{kHz}} ) = - 4 \cdot A \cdot T = -2 \cdot 10^{ - 3} \;{\rm{V/Hz}}\; \Rightarrow \; |X( {f = 1\;{\rm{kHz}}} )| \hspace{0.15 cm}\underline{= 2 \;{\rm{mV/Hz}}}{\rm{.}}
(2) Das Spektrum {Y(f)} kann aus {X(f)} durch Anwendung des Integrationssatzes ermittelt werden.
- Wegen {X(f = 0)} = 0 muss die Diracfunktion bei der Frequenz f = 0 nicht berücksichtigt werden und man erhält:
- Y( f ) = \frac{X( f )}{{{\rm{j}} \cdot 2{\rm{\pi }}fT}} = \frac{{ - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{j}}\cdot 2{\rm{\pi }}fT}} = 2{\rm{j}} \cdot A \cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{\pi }}fT}}.
- Es ergibt sich selbstverständlich das gleiche Ergebnis wie in der Aufgabe 3.5:
- Bei der Frequenz f = 0 hat auch {y(t)} keine Spektralanteile ⇒ {Y(f = 0)} \;\underline{= 0}.
- Für f = 1\,\text{kHz} \ \ (f \cdot T = 0.5) erhält man gegenüber X(f) einen um den Faktor \pi kleineren Wert:
- |Y( {f = 1\;{\rm{kHz}}} )| = \frac{4 \cdot A \cdot T}{\rm{\pi }} \hspace{0.15 cm}\underline{= {\rm{0}}{\rm{.636}} \;{\rm{mV/Hz}}}{\rm{.}}